Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | June 2005 (modified) | | September 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | April 2006 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_T_law = CSP_T_law_SKIP + CSP_T_law_ref + CSP_T_law_dist + CSP_T_law_alpha_par + CSP_T_law_step + CSP_T_law_rep_par + CSP_T_law_fp + CSP_T_law_DIV + CSP_T_law_SKIP_DIV + CSP_T_law_step_ext + CSP_T_law_norm: (*-----------------------------------------------------------* | | | Ext_choice_Int_choice | | | | These rules show the difference between models T and F. | | | *-----------------------------------------------------------*) lemma cspT_Ext_choice_Int_choice: "P1 [+] P2 =T P1 |~| P2" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces)+ done lemma cspT_Ext_pre_choice_Rep_int_choice: "? :X -> Pf =T ! x:X .. x -> Pf x" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces) apply (force) apply (rule, simp add: in_traces) apply (force) done lemmas cspT_Ext_Int = cspT_Ext_choice_Int_choice cspT_Ext_pre_choice_Rep_int_choice (********************************************************* SKIP , DIV and Internal choice *********************************************************) (*** |~| ***) lemma cspT_SKIP_DIV_Int_choice: "[| P = SKIP | P = DIV ; Q = SKIP | Q = DIV |] ==> (P |~| Q) =T (if (P = SKIP | Q = SKIP) then SKIP else DIV)" apply (elim disjE) apply (simp_all) apply (rule cspT_rw_left) apply (rule cspT_idem) apply (rule cspT_reflex) apply (rule cspT_rw_left) apply (rule cspT_unit) apply (rule cspT_reflex) apply (rule cspT_rw_left) apply (rule cspT_unit) apply (rule cspT_reflex) apply (rule cspT_rw_left) apply (rule cspT_idem) apply (rule cspT_reflex) done (*** !! ***) lemma cspT_SKIP_DIV_Rep_int_choice: "[| ALL c:C. (Qf c = SKIP | Qf c = DIV) |] ==> (!! c:C .. Qf c) =T (if (EX c:C. Qf c = SKIP) then SKIP else DIV)" apply (case_tac "C={}") apply (simp add: cspT_Rep_int_choice_empty) apply (case_tac "ALL c:C. Qf c = DIV") apply (simp) apply (rule cspT_rw_left) apply (rule cspT_Rep_int_choice_const) apply (simp) apply (force) apply (simp) apply (simp) apply (elim bexE) apply (frule_tac x="c" in bspec) apply (simp_all) apply (intro conjI impI) apply (rule cspT_rw_left) apply (subgoal_tac "!! :C .. Qf =T !! :({c:C. Qf c = SKIP} Un {c:C. Qf c = DIV}) .. Qf") apply (simp) apply (rule cspT_decompo) apply (force) apply (simp) apply (rule cspT_rw_left) apply (rule cspT_Rep_int_choice_union_Int) apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (rule cspT_Rep_int_choice_const) apply (force) apply (rule ballI) apply (simp) apply (case_tac "{c : C. Qf c = DIV}={}") apply (simp (no_asm_simp)) apply (rule cspT_Rep_int_choice0_DIV) apply (rule cspT_rw_left) apply (rule cspT_Rep_int_choice_const) apply (simp_all) apply (simp) apply (rule cspT_unit) done end
lemma cspT_Ext_choice_Int_choice:
P1.0 [+] P2.0 =T P1.0 |~| P2.0
lemma cspT_Ext_pre_choice_Rep_int_choice:
? :X -> Pf =T ! x:X .. x -> Pf x
lemmas cspT_Ext_Int:
P1.0 [+] P2.0 =T P1.0 |~| P2.0
? :X -> Pf =T ! x:X .. x -> Pf x
lemmas cspT_Ext_Int:
P1.0 [+] P2.0 =T P1.0 |~| P2.0
? :X -> Pf =T ! x:X .. x -> Pf x
lemma cspT_SKIP_DIV_Int_choice:
[| P = SKIP ∨ P = DIV; Q = SKIP ∨ Q = DIV |] ==> P |~| Q =T (if P = SKIP ∨ Q = SKIP then SKIP else DIV)
lemma cspT_SKIP_DIV_Rep_int_choice:
∀c∈C. Qf c = SKIP ∨ Qf c = DIV ==> !! :C .. Qf =T (if ∃c∈C. Qf c = SKIP then SKIP else DIV)