Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law_SKIP_DIV(*-------------------------------------------* | CSP-Prover on Isabelle2005 | | December 2005 | | April 2006 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_T_law_SKIP_DIV = CSP_T_law_SKIP + CSP_T_law_DIV: (********************************************************* (SKIP [+] DIV) *********************************************************) lemma cspT_SKIP_DIV_Ext_choice1: "(SKIP [+] DIV) =T SKIP" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule, simp add: in_traces) apply (force) (* <= *) apply (rule, simp add: in_traces) done lemma cspT_SKIP_DIV_Ext_choice2: "(DIV [+] SKIP) =T SKIP" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces)+ done lemmas cspT_SKIP_DIV_Ext_choice = cspT_SKIP_DIV_Ext_choice1 cspT_SKIP_DIV_Ext_choice2 (********************************************************* SKIP |[X]| DIV *********************************************************) lemma cspT_SKIP_DIV_Parallel1: "SKIP |[X]| DIV =T DIV" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule) apply (simp add: in_traces) apply (elim disjE conjE exE) apply (simp_all) (* <= *) apply (rule) apply (simp add: in_traces) done lemma cspT_SKIP_DIV_Parallel2: "DIV |[X]| SKIP =T DIV" apply (rule cspT_rw_left) apply (rule cspT_commut) apply (rule cspT_rw_left) apply (rule cspT_SKIP_DIV_Parallel1) apply (rule cspT_reflex) done lemmas cspT_SKIP_DIV_Parallel = cspT_SKIP_DIV_Parallel1 cspT_SKIP_DIV_Parallel2 cspT_Parallel_term cspT_DIV_Parallel (********************************************************* DIV and Parallel-SKIP *********************************************************) (*** SKIP and DIV ***) lemma cspT_DIV_Parallel_Ext_choice_SKIP_l: "(P [+] SKIP) |[X]| DIV =T (P |[X]| DIV)" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule, simp add: in_traces) apply (elim conjE exE disjE) apply (simp_all) apply (simp add: par_tr_nil_right) apply (elim conjE) apply (simp add: image_iff) (* <= *) apply (rule, simp add: in_traces) apply (elim conjE exE disjE) apply (simp add: par_tr_nil_right) apply (elim conjE) apply (simp add: image_iff) done lemma cspT_DIV_Parallel_Ext_choice_SKIP_r: "DIV |[X]| (P [+] SKIP) =T (DIV |[X]| P)" apply (rule cspT_rw_left) apply (rule cspT_commut) apply (rule cspT_rw_left) apply (rule cspT_DIV_Parallel_Ext_choice_SKIP_l) apply (rule cspT_commut) done lemmas cspT_DIV_Parallel_Ext_choice_SKIP = cspT_DIV_Parallel_Ext_choice_SKIP_l cspT_DIV_Parallel_Ext_choice_SKIP_r lemmas cspT_DIV_Parallel_Ext_choice = cspT_DIV_Parallel_Ext_choice_SKIP cspT_DIV_Parallel_Ext_choice_DIV (********************************************************* SKIP and Parallel-DIV *********************************************************) (*** DIV and SKIP ***) lemma cspT_SKIP_Parallel_Ext_choice_DIV_l: "((? :Y -> Pf) [+] DIV) |[X]| SKIP =T (? x:(Y - X) -> (Pf x |[X]| SKIP)) [+] DIV" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule, simp add: in_traces) apply (elim conjE exE disjE) apply (simp_all) apply (rule disjI2) apply (simp add: par_tr_nil_right) apply (elim conjE) apply (simp add: image_iff) apply (rule_tac x="sa" in exI) apply (rule_tac x="<>" in exI) apply (simp add: par_tr_nil_right) apply (rule disjI2) apply (simp add: par_tr_Tick_right) apply (elim conjE) apply (simp add: image_iff) apply (rule_tac x="sa" in exI) apply (rule_tac x="<Tick>" in exI) apply (simp add: par_tr_Tick_right) (* <= *) apply (rule, simp add: in_traces) apply (elim conjE exE disjE) apply (simp_all) apply (simp add: par_tr_nil_right) apply (elim conjE) apply (rule_tac x="<Ev a> ^^ sa" in exI) apply (rule_tac x="<>" in exI) apply (simp add: par_tr_nil_right) apply (simp add: image_iff) apply (simp add: par_tr_Tick_right) apply (elim conjE) apply (rule_tac x="<Ev a> ^^ sa" in exI) apply (rule_tac x="<Tick>" in exI) apply (simp add: par_tr_Tick_right) apply (simp add: image_iff) done lemma cspT_SKIP_Parallel_Ext_choice_DIV_r: "SKIP |[X]| ((? :Y -> Pf) [+] DIV) =T (? x:(Y - X) -> (SKIP |[X]| Pf x)) [+] DIV" apply (rule cspT_rw_left) apply (rule cspT_commut) apply (rule cspT_rw_left) apply (rule cspT_SKIP_Parallel_Ext_choice_DIV_l) apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (rule cspT_decompo) apply (simp) apply (rule cspT_commut) apply (rule cspT_reflex) apply (rule cspT_reflex) done lemmas cspT_SKIP_Parallel_Ext_choice_DIV = cspT_SKIP_Parallel_Ext_choice_DIV_l cspT_SKIP_Parallel_Ext_choice_DIV_r lemmas cspT_SKIP_Parallel_Ext_choice = cspT_SKIP_Parallel_Ext_choice_SKIP cspT_SKIP_Parallel_Ext_choice_DIV (*---------------------------------------------* | SKIP , DIV | *---------------------------------------------*) lemmas cspT_SKIP_DIV_Parallel_step = cspT_Parallel_preterm cspT_DIV_Parallel_step lemmas cspT_SKIP_DIV_Parallel_Ext_choice = cspT_SKIP_Parallel_Ext_choice cspT_DIV_Parallel_Ext_choice lemmas cspT_SKIP_DIV_Hiding_Id = cspT_SKIP_Hiding_Id cspT_DIV_Hiding_Id lemmas cspT_SKIP_DIV_Hiding_step = cspT_DIV_Hiding_step cspT_SKIP_Hiding_step lemmas cspT_SKIP_DIV_Renaming_Id = cspT_SKIP_Renaming_Id cspT_DIV_Renaming_Id lemmas cspT_SKIP_DIV_Seq_compo = cspT_Seq_compo_unit cspT_DIV_Seq_compo lemmas cspT_SKIP_DIV_Seq_compo_step = cspT_SKIP_Seq_compo_step cspT_DIV_Seq_compo_step lemmas cspT_SKIP_DIV_Depth_rest = cspT_SKIP_Depth_rest cspT_DIV_Depth_rest lemmas cspT_SKIP_DIV = cspT_SKIP_DIV_Parallel_step cspT_SKIP_DIV_Ext_choice cspT_SKIP_DIV_Parallel cspT_SKIP_DIV_Parallel_Ext_choice cspT_SKIP_DIV_Hiding_Id cspT_SKIP_DIV_Hiding_step cspT_SKIP_DIV_Renaming_Id cspT_SKIP_DIV_Seq_compo cspT_SKIP_DIV_Seq_compo_step cspT_SKIP_DIV_Depth_rest (*** resolve ***) lemmas cspT_Ext_choice_SKIP_DIV_resolve = cspT_Ext_choice_SKIP_resolve cspT_Ext_choice_DIV_resolve (*----------------------------------------------* | | | for convenienve (SKIP or DIV) | | | *----------------------------------------------*) (********************************************************* (SKIP or DIV [+] SKIP or DIV) *********************************************************) lemma cspT_SKIP_or_DIV_Ext_choice: "[| P = SKIP | P = DIV ; Q = SKIP | Q = DIV |] ==> (P [+] Q) =T (if (P = SKIP | Q = SKIP) then SKIP else DIV)" apply (elim disjE) apply (simp add: cspT_Ext_choice_idem) apply (simp add: cspT_SKIP_DIV) apply (simp add: cspT_Ext_choice_unit) apply (simp add: cspT_SKIP_DIV) apply (simp add: cspT_Ext_choice_unit) apply (simp add: cspT_Ext_choice_idem) done (********************************************************* (SKIP or DIV |[X]| SKIP or DIV) *********************************************************) lemma cspT_SKIP_or_DIV_Parallel: "[| P = SKIP | P = DIV ; Q = SKIP | Q = DIV |] ==> (P |[X]| Q) =T (if (P = SKIP & Q = SKIP) then SKIP else DIV)" apply (elim disjE) apply (simp_all add: cspT_SKIP_DIV) done (********************************************************* (SKIP or DIV) and Hiding *********************************************************) lemma cspT_SKIP_or_DIV_Hiding_step: "Q = SKIP | Q = DIV ==> ((? :Y -> Pf) [+] Q) -- X =T (((? x:(Y-X) -> (Pf x -- X)) [+] Q) |~| (! x:(Y Int X) .. (Pf x -- X)))" apply (erule disjE) apply (simp_all add: cspT_SKIP_DIV) done (********************************************************* SKIP or DIV |. Suc n *********************************************************) lemma cspT_SKIP_or_DIV_Depth_rest: "Q = SKIP | Q = DIV ==> Q |. (Suc n) =T Q" apply (erule disjE) apply (simp_all add: cspT_SKIP_DIV) done (********************************************************* P [+] (SKIP or DIV) *********************************************************) lemma cspT_Ext_choice_SKIP_or_DIV_resolve: "Q = SKIP | Q = DIV ==> P [+] Q =T P [> Q" apply (erule disjE) apply (simp_all add: cspT_Ext_choice_SKIP_DIV_resolve) done lemmas cspT_SKIP_or_DIV = cspT_SKIP_or_DIV_Ext_choice cspT_SKIP_or_DIV_Parallel cspT_SKIP_or_DIV_Hiding_step cspT_SKIP_or_DIV_Depth_rest (* no resolve *) end
lemma cspT_SKIP_DIV_Ext_choice1:
SKIP [+] DIV =T SKIP
lemma cspT_SKIP_DIV_Ext_choice2:
DIV [+] SKIP =T SKIP
lemmas cspT_SKIP_DIV_Ext_choice:
SKIP [+] DIV =T SKIP
DIV [+] SKIP =T SKIP
lemmas cspT_SKIP_DIV_Ext_choice:
SKIP [+] DIV =T SKIP
DIV [+] SKIP =T SKIP
lemma cspT_SKIP_DIV_Parallel1:
SKIP |[X]| DIV =T DIV
lemma cspT_SKIP_DIV_Parallel2:
DIV |[X]| SKIP =T DIV
lemmas cspT_SKIP_DIV_Parallel:
SKIP |[X]| DIV =T DIV
DIV |[X]| SKIP =T DIV
SKIP |[X]| SKIP =T SKIP
DIV |[X]| DIV =T DIV
lemmas cspT_SKIP_DIV_Parallel:
SKIP |[X]| DIV =T DIV
DIV |[X]| SKIP =T DIV
SKIP |[X]| SKIP =T SKIP
DIV |[X]| DIV =T DIV
lemma cspT_DIV_Parallel_Ext_choice_SKIP_l:
(P [+] SKIP) |[X]| DIV =T P |[X]| DIV
lemma cspT_DIV_Parallel_Ext_choice_SKIP_r:
DIV |[X]| (P [+] SKIP) =T DIV |[X]| P
lemmas cspT_DIV_Parallel_Ext_choice_SKIP:
(P [+] SKIP) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] SKIP) =T DIV |[X]| P
lemmas cspT_DIV_Parallel_Ext_choice_SKIP:
(P [+] SKIP) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] SKIP) =T DIV |[X]| P
lemmas cspT_DIV_Parallel_Ext_choice:
(P [+] SKIP) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] SKIP) =T DIV |[X]| P
(P [+] DIV) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] DIV) =T DIV |[X]| P
lemmas cspT_DIV_Parallel_Ext_choice:
(P [+] SKIP) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] SKIP) =T DIV |[X]| P
(P [+] DIV) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] DIV) =T DIV |[X]| P
lemma cspT_SKIP_Parallel_Ext_choice_DIV_l:
(? :Y -> Pf [+] DIV) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] DIV
lemma cspT_SKIP_Parallel_Ext_choice_DIV_r:
SKIP |[X]| (? :Y -> Pf [+] DIV) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] DIV
lemmas cspT_SKIP_Parallel_Ext_choice_DIV:
(? :Y -> Pf [+] DIV) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] DIV
SKIP |[X]| (? :Y -> Pf [+] DIV) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] DIV
lemmas cspT_SKIP_Parallel_Ext_choice_DIV:
(? :Y -> Pf [+] DIV) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] DIV
SKIP |[X]| (? :Y -> Pf [+] DIV) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] DIV
lemmas cspT_SKIP_Parallel_Ext_choice:
(? :Y -> Pf [+] SKIP) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] SKIP
SKIP |[X]| (? :Y -> Pf [+] SKIP) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] SKIP
(? :Y -> Pf [+] DIV) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] DIV
SKIP |[X]| (? :Y -> Pf [+] DIV) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] DIV
lemmas cspT_SKIP_Parallel_Ext_choice:
(? :Y -> Pf [+] SKIP) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] SKIP
SKIP |[X]| (? :Y -> Pf [+] SKIP) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] SKIP
(? :Y -> Pf [+] DIV) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] DIV
SKIP |[X]| (? :Y -> Pf [+] DIV) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] DIV
lemmas cspT_SKIP_DIV_Parallel_step:
SKIP |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (SKIP |[X]| Qf x)
? :Y -> Pf |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP)
DIV |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
? :Y -> Pf |[X]| DIV =T ? x:(Y - X) -> (Pf x |[X]| DIV) [+] DIV
lemmas cspT_SKIP_DIV_Parallel_step:
SKIP |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (SKIP |[X]| Qf x)
? :Y -> Pf |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP)
DIV |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
? :Y -> Pf |[X]| DIV =T ? x:(Y - X) -> (Pf x |[X]| DIV) [+] DIV
lemmas cspT_SKIP_DIV_Parallel_Ext_choice:
(? :Y -> Pf [+] SKIP) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] SKIP
SKIP |[X]| (? :Y -> Pf [+] SKIP) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] SKIP
(? :Y -> Pf [+] DIV) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] DIV
SKIP |[X]| (? :Y -> Pf [+] DIV) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] DIV
(P [+] SKIP) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] SKIP) =T DIV |[X]| P
(P [+] DIV) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] DIV) =T DIV |[X]| P
lemmas cspT_SKIP_DIV_Parallel_Ext_choice:
(? :Y -> Pf [+] SKIP) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] SKIP
SKIP |[X]| (? :Y -> Pf [+] SKIP) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] SKIP
(? :Y -> Pf [+] DIV) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] DIV
SKIP |[X]| (? :Y -> Pf [+] DIV) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] DIV
(P [+] SKIP) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] SKIP) =T DIV |[X]| P
(P [+] DIV) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] DIV) =T DIV |[X]| P
lemmas cspT_SKIP_DIV_Hiding_Id:
SKIP -- X =T SKIP
DIV -- X =T DIV
lemmas cspT_SKIP_DIV_Hiding_Id:
SKIP -- X =T SKIP
DIV -- X =T DIV
lemmas cspT_SKIP_DIV_Hiding_step:
(? :Y -> Pf [+] DIV) -- X =T ? x:(Y - X) -> Pf x -- X [+] DIV |~| ! x:(Y ∩ X) .. Pf x -- X
(? :Y -> Pf [+] SKIP) -- X =T ? x:(Y - X) -> Pf x -- X [+] SKIP |~| ! x:(Y ∩ X) .. Pf x -- X
lemmas cspT_SKIP_DIV_Hiding_step:
(? :Y -> Pf [+] DIV) -- X =T ? x:(Y - X) -> Pf x -- X [+] DIV |~| ! x:(Y ∩ X) .. Pf x -- X
(? :Y -> Pf [+] SKIP) -- X =T ? x:(Y - X) -> Pf x -- X [+] SKIP |~| ! x:(Y ∩ X) .. Pf x -- X
lemmas cspT_SKIP_DIV_Renaming_Id:
SKIP [[r]] =T SKIP
DIV [[r]] =T DIV
lemmas cspT_SKIP_DIV_Renaming_Id:
SKIP [[r]] =T SKIP
DIV [[r]] =T DIV
lemmas cspT_SKIP_DIV_Seq_compo:
SKIP ;; P =T P
P ;; SKIP =T P
DIV ;; P =T DIV
lemmas cspT_SKIP_DIV_Seq_compo:
SKIP ;; P =T P
P ;; SKIP =T P
DIV ;; P =T DIV
lemmas cspT_SKIP_DIV_Seq_compo_step:
(? :X -> Pf [> SKIP) ;; Q =T ? x:X -> (Pf x ;; Q) [> Q
(? :X -> Pf [> DIV) ;; Q =T ? x:X -> (Pf x ;; Q) [> DIV
lemmas cspT_SKIP_DIV_Seq_compo_step:
(? :X -> Pf [> SKIP) ;; Q =T ? x:X -> (Pf x ;; Q) [> Q
(? :X -> Pf [> DIV) ;; Q =T ? x:X -> (Pf x ;; Q) [> DIV
lemmas cspT_SKIP_DIV_Depth_rest:
SKIP |. Suc n =T SKIP
DIV |. n =T DIV
lemmas cspT_SKIP_DIV_Depth_rest:
SKIP |. Suc n =T SKIP
DIV |. n =T DIV
lemmas cspT_SKIP_DIV:
SKIP |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (SKIP |[X]| Qf x)
? :Y -> Pf |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP)
DIV |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
? :Y -> Pf |[X]| DIV =T ? x:(Y - X) -> (Pf x |[X]| DIV) [+] DIV
SKIP [+] DIV =T SKIP
DIV [+] SKIP =T SKIP
SKIP |[X]| DIV =T DIV
DIV |[X]| SKIP =T DIV
SKIP |[X]| SKIP =T SKIP
DIV |[X]| DIV =T DIV
(? :Y -> Pf [+] SKIP) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] SKIP
SKIP |[X]| (? :Y -> Pf [+] SKIP) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] SKIP
(? :Y -> Pf [+] DIV) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] DIV
SKIP |[X]| (? :Y -> Pf [+] DIV) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] DIV
(P [+] SKIP) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] SKIP) =T DIV |[X]| P
(P [+] DIV) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] DIV) =T DIV |[X]| P
SKIP -- X =T SKIP
DIV -- X =T DIV
(? :Y -> Pf [+] DIV) -- X =T ? x:(Y - X) -> Pf x -- X [+] DIV |~| ! x:(Y ∩ X) .. Pf x -- X
(? :Y -> Pf [+] SKIP) -- X =T ? x:(Y - X) -> Pf x -- X [+] SKIP |~| ! x:(Y ∩ X) .. Pf x -- X
SKIP [[r]] =T SKIP
DIV [[r]] =T DIV
SKIP ;; P =T P
P ;; SKIP =T P
DIV ;; P =T DIV
(? :X -> Pf [> SKIP) ;; Q =T ? x:X -> (Pf x ;; Q) [> Q
(? :X -> Pf [> DIV) ;; Q =T ? x:X -> (Pf x ;; Q) [> DIV
SKIP |. Suc n =T SKIP
DIV |. n =T DIV
lemmas cspT_SKIP_DIV:
SKIP |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (SKIP |[X]| Qf x)
? :Y -> Pf |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP)
DIV |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
? :Y -> Pf |[X]| DIV =T ? x:(Y - X) -> (Pf x |[X]| DIV) [+] DIV
SKIP [+] DIV =T SKIP
DIV [+] SKIP =T SKIP
SKIP |[X]| DIV =T DIV
DIV |[X]| SKIP =T DIV
SKIP |[X]| SKIP =T SKIP
DIV |[X]| DIV =T DIV
(? :Y -> Pf [+] SKIP) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] SKIP
SKIP |[X]| (? :Y -> Pf [+] SKIP) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] SKIP
(? :Y -> Pf [+] DIV) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] DIV
SKIP |[X]| (? :Y -> Pf [+] DIV) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] DIV
(P [+] SKIP) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] SKIP) =T DIV |[X]| P
(P [+] DIV) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] DIV) =T DIV |[X]| P
SKIP -- X =T SKIP
DIV -- X =T DIV
(? :Y -> Pf [+] DIV) -- X =T ? x:(Y - X) -> Pf x -- X [+] DIV |~| ! x:(Y ∩ X) .. Pf x -- X
(? :Y -> Pf [+] SKIP) -- X =T ? x:(Y - X) -> Pf x -- X [+] SKIP |~| ! x:(Y ∩ X) .. Pf x -- X
SKIP [[r]] =T SKIP
DIV [[r]] =T DIV
SKIP ;; P =T P
P ;; SKIP =T P
DIV ;; P =T DIV
(? :X -> Pf [> SKIP) ;; Q =T ? x:X -> (Pf x ;; Q) [> Q
(? :X -> Pf [> DIV) ;; Q =T ? x:X -> (Pf x ;; Q) [> DIV
SKIP |. Suc n =T SKIP
DIV |. n =T DIV
lemmas cspT_Ext_choice_SKIP_DIV_resolve:
P [+] SKIP =T P [> SKIP
P [+] DIV =T P [> DIV
lemmas cspT_Ext_choice_SKIP_DIV_resolve:
P [+] SKIP =T P [> SKIP
P [+] DIV =T P [> DIV
lemma cspT_SKIP_or_DIV_Ext_choice:
[| P = SKIP ∨ P = DIV; Q = SKIP ∨ Q = DIV |] ==> P [+] Q =T (if P = SKIP ∨ Q = SKIP then SKIP else DIV)
lemma cspT_SKIP_or_DIV_Parallel:
[| P = SKIP ∨ P = DIV; Q = SKIP ∨ Q = DIV |] ==> P |[X]| Q =T (if P = SKIP ∧ Q = SKIP then SKIP else DIV)
lemma cspT_SKIP_or_DIV_Hiding_step:
Q = SKIP ∨ Q = DIV ==> (? :Y -> Pf [+] Q) -- X =T ? x:(Y - X) -> Pf x -- X [+] Q |~| ! x:(Y ∩ X) .. Pf x -- X
lemma cspT_SKIP_or_DIV_Depth_rest:
Q = SKIP ∨ Q = DIV ==> Q |. Suc n =T Q
lemma cspT_Ext_choice_SKIP_or_DIV_resolve:
Q = SKIP ∨ Q = DIV ==> P [+] Q =T P [> Q
lemmas cspT_SKIP_or_DIV:
[| P = SKIP ∨ P = DIV; Q = SKIP ∨ Q = DIV |] ==> P [+] Q =T (if P = SKIP ∨ Q = SKIP then SKIP else DIV)
[| P = SKIP ∨ P = DIV; Q = SKIP ∨ Q = DIV |] ==> P |[X]| Q =T (if P = SKIP ∧ Q = SKIP then SKIP else DIV)
Q = SKIP ∨ Q = DIV ==> (? :Y -> Pf [+] Q) -- X =T ? x:(Y - X) -> Pf x -- X [+] Q |~| ! x:(Y ∩ X) .. Pf x -- X
Q = SKIP ∨ Q = DIV ==> Q |. Suc n =T Q
lemmas cspT_SKIP_or_DIV:
[| P = SKIP ∨ P = DIV; Q = SKIP ∨ Q = DIV |] ==> P [+] Q =T (if P = SKIP ∨ Q = SKIP then SKIP else DIV)
[| P = SKIP ∨ P = DIV; Q = SKIP ∨ Q = DIV |] ==> P |[X]| Q =T (if P = SKIP ∧ Q = SKIP then SKIP else DIV)
Q = SKIP ∨ Q = DIV ==> (? :Y -> Pf [+] Q) -- X =T ? x:(Y - X) -> Pf x -- X [+] Q |~| ! x:(Y ∩ X) .. Pf x -- X
Q = SKIP ∨ Q = DIV ==> Q |. Suc n =T Q