Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law_DIV (*-------------------------------------------*
| CSP-Prover on Isabelle2005 |
| December 2005 |
| April 2006 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_T_law_DIV = CSP_T_law_basic:
(*****************************************************************
1. DIV |[X]| DIV
2. DIV |[X]| P
3. P |[X]| DIV
4. DIV -- X
5. DIV [[r]]
6. DIV ;; P
7. P ;; DIV
8. DIV |. n
*****************************************************************)
(*********************************************************
DIV |[X]| DIV
*********************************************************)
(* T *)
lemma cspT_DIV_Parallel:
"DIV |[X]| DIV =T DIV"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)+
done
(*********************************************************
DIV |[X]| P
*********************************************************)
lemma cspT_DIV_Parallel_step_l:
"DIV |[X]| (? :Y -> Qf) =T (? x:(Y-X) -> (DIV |[X]| Qf x)) [+] DIV"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule)
apply (simp add: in_traces)
apply (insert trace_nil_or_Tick_or_Ev)
apply (elim disjE conjE exE)
apply (simp_all)
apply (drule_tac x="t" in spec)
apply (erule disjE, simp)
apply (erule disjE, simp)
apply (elim conjE exE, simp)
apply (simp add: par_tr_head)
apply (rule_tac x="s" in exI, simp)
(* <= *)
apply (rule)
apply (simp add: in_traces)
apply (elim disjE conjE exE)
apply (simp_all)
apply (rule_tac x="<Ev a> ^^ ta" in exI, simp)
apply (simp add: par_tr_head)
done
(*** r ***)
lemma cspT_DIV_Parallel_step_r:
"(? :Y -> Pf) |[X]| DIV =T
(? x:(Y - X) -> (Pf x |[X]| DIV)) [+] DIV"
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (rule cspT_rw_left)
apply (rule cspT_DIV_Parallel_step_l)
apply (rule cspT_rw_left)
apply (rule cspT_decompo)
apply (rule cspT_decompo)
apply (simp)
apply (rule cspT_commut)
apply (rule cspT_reflex)
apply (rule cspT_reflex)
done
lemmas cspT_DIV_Parallel_step =
cspT_DIV_Parallel_step_l cspT_DIV_Parallel_step_r
(*********************************************************
DIV and Parallel
*********************************************************)
lemma cspT_DIV_Parallel_Ext_choice_DIV_l:
"(P [+] DIV) |[X]| DIV =T (P |[X]| DIV)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule, simp add: in_traces)
apply (elim conjE exE disjE)
apply (simp_all)
apply (fast)
(* <= *)
apply (rule, simp add: in_traces)
apply (fast)
done
lemma cspT_DIV_Parallel_Ext_choice_DIV_r:
"DIV |[X]| (P [+] DIV) =T (DIV |[X]| P)"
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (rule cspT_rw_left)
apply (rule cspT_DIV_Parallel_Ext_choice_DIV_l)
apply (rule cspT_commut)
done
lemmas cspT_DIV_Parallel_Ext_choice_DIV =
cspT_DIV_Parallel_Ext_choice_DIV_l
cspT_DIV_Parallel_Ext_choice_DIV_r
(*********************************************************
DIV -- X
*********************************************************)
lemma cspT_DIV_Hiding_Id:
"DIV -- X =T DIV"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule)
apply (simp add: in_traces)
(* <= *)
apply (rule)
apply (simp add: in_traces)
done
(*** div-hide-step ***)
lemma cspT_DIV_Hiding_step:
"((? :Y -> Pf) [+] DIV) -- X =T
(((? x:(Y-X) -> (Pf x -- X)) [+] DIV) |~| (! x:(Y Int X) .. (Pf x -- X)))"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule, simp add: in_traces)
apply (elim conjE exE disjE)
apply (simp_all)
apply (case_tac "a : X", force)
apply (force)
(* <= *)
apply (rule)
apply (simp add: in_traces)
apply (elim conjE exE bexE disjE)
apply (simp_all)
apply (force)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (simp)
apply (force)
apply (rule_tac x="<Ev a> ^^ s" in exI)
apply (simp)
done
(*********************************************************
DIV [[r]]
*********************************************************)
lemma cspT_DIV_Renaming_Id:
"DIV [[r]] =T DIV"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule)
apply (simp add: in_traces)
(* <= *)
apply (rule)
apply (simp add: in_traces)
done
(*********************************************************
DIV ;; P
*********************************************************)
lemma cspT_DIV_Seq_compo: "DIV ;; P =T DIV"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule, simp add: in_traces)
apply (force)
(* <= *)
apply (rule, simp add: in_traces)
done
(*********************************************************
DIV and Sequential composition
*********************************************************)
lemma cspT_DIV_Seq_compo_step:
"((? :X -> Pf) [> DIV) ;; Q =T (? x:X -> (Pf x ;; Q)) [> DIV"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule, simp add: in_traces)
apply (elim conjE exE disjE)
apply (simp_all)
apply (rule disjI1)
apply (fast)
apply (rule disjI2)
apply (rule disjI1)
apply (insert trace_nil_or_Tick_or_Ev)
apply (drule_tac x="s" in spec)
apply (elim disjE conjE exE)
apply (simp_all)
apply (simp add: appt_assoc)
apply (rule disjI2)
apply (rule_tac x="sb" in exI)
apply (rule_tac x="ta" in exI)
apply (simp)
(* <= *)
apply (rule, simp add: in_traces)
apply (elim conjE exE disjE)
apply (simp_all)
apply (rule disjI1)
apply (rule_tac x="<>" in exI)
apply (simp)
apply (rule disjI1)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (simp)
apply (rule disjI2)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="ta" in exI)
apply (simp add: appt_assoc)
apply (rule disjI1)
apply (rule_tac x="<>" in exI)
apply (simp)
done
(*********************************************************
DIV |. n
*********************************************************)
lemma cspT_DIV_Depth_rest:
"DIV |. n =T DIV"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule)
apply (simp add: in_traces)
(* <= *)
apply (rule)
apply (simp add: in_traces)
done
(*********************************************************
cspT_DIV
*********************************************************)
lemmas cspT_DIV =
cspT_DIV_Parallel
cspT_DIV_Parallel_step
cspT_DIV_Parallel_Ext_choice_DIV
cspT_DIV_Hiding_Id
cspT_DIV_Hiding_step
cspT_DIV_Renaming_Id
cspT_DIV_Seq_compo
cspT_DIV_Seq_compo_step
cspT_DIV_Depth_rest
(*********************************************************
P [+] DIV
*********************************************************)
lemma cspT_Ext_choice_DIV_resolve: "P [+] DIV =T P [> DIV"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule, simp add: in_traces)
(* <= *)
apply (rule, simp add: in_traces)
done
end
lemma cspT_DIV_Parallel:
DIV |[X]| DIV =T DIV
lemma cspT_DIV_Parallel_step_l:
DIV |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
lemma cspT_DIV_Parallel_step_r:
? :Y -> Pf |[X]| DIV =T ? x:(Y - X) -> (Pf x |[X]| DIV) [+] DIV
lemmas cspT_DIV_Parallel_step:
DIV |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
? :Y -> Pf |[X]| DIV =T ? x:(Y - X) -> (Pf x |[X]| DIV) [+] DIV
lemmas cspT_DIV_Parallel_step:
DIV |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
? :Y -> Pf |[X]| DIV =T ? x:(Y - X) -> (Pf x |[X]| DIV) [+] DIV
lemma cspT_DIV_Parallel_Ext_choice_DIV_l:
(P [+] DIV) |[X]| DIV =T P |[X]| DIV
lemma cspT_DIV_Parallel_Ext_choice_DIV_r:
DIV |[X]| (P [+] DIV) =T DIV |[X]| P
lemmas cspT_DIV_Parallel_Ext_choice_DIV:
(P [+] DIV) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] DIV) =T DIV |[X]| P
lemmas cspT_DIV_Parallel_Ext_choice_DIV:
(P [+] DIV) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] DIV) =T DIV |[X]| P
lemma cspT_DIV_Hiding_Id:
DIV -- X =T DIV
lemma cspT_DIV_Hiding_step:
(? :Y -> Pf [+] DIV) -- X =T ? x:(Y - X) -> Pf x -- X [+] DIV |~| ! x:(Y ∩ X) .. Pf x -- X
lemma cspT_DIV_Renaming_Id:
DIV [[r]] =T DIV
lemma cspT_DIV_Seq_compo:
DIV ;; P =T DIV
lemma cspT_DIV_Seq_compo_step:
(? :X -> Pf [> DIV) ;; Q =T ? x:X -> (Pf x ;; Q) [> DIV
lemma cspT_DIV_Depth_rest:
DIV |. n =T DIV
lemmas cspT_DIV:
DIV |[X]| DIV =T DIV
DIV |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
? :Y -> Pf |[X]| DIV =T ? x:(Y - X) -> (Pf x |[X]| DIV) [+] DIV
(P [+] DIV) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] DIV) =T DIV |[X]| P
DIV -- X =T DIV
(? :Y -> Pf [+] DIV) -- X =T ? x:(Y - X) -> Pf x -- X [+] DIV |~| ! x:(Y ∩ X) .. Pf x -- X
DIV [[r]] =T DIV
DIV ;; P =T DIV
(? :X -> Pf [> DIV) ;; Q =T ? x:X -> (Pf x ;; Q) [> DIV
DIV |. n =T DIV
lemmas cspT_DIV:
DIV |[X]| DIV =T DIV
DIV |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
? :Y -> Pf |[X]| DIV =T ? x:(Y - X) -> (Pf x |[X]| DIV) [+] DIV
(P [+] DIV) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] DIV) =T DIV |[X]| P
DIV -- X =T DIV
(? :Y -> Pf [+] DIV) -- X =T ? x:(Y - X) -> Pf x -- X [+] DIV |~| ! x:(Y ∩ X) .. Pf x -- X
DIV [[r]] =T DIV
DIV ;; P =T DIV
(? :X -> Pf [> DIV) ;; Q =T ? x:X -> (Pf x ;; Q) [> DIV
DIV |. n =T DIV
lemma cspT_Ext_choice_DIV_resolve:
P [+] DIV =T P [> DIV