Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law_basic (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| December 2004 |
| June 2005 (modified) |
| September 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| October 2005 (modified) |
| April 2006 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_T_law_basic = CSP_T_law_decompo:
(*****************************************************************
1. Commutativity
2. Associativity
3. Idempotence
4. Left Commutativity
5. IF
*****************************************************************)
(*********************************************************
IF bool
*********************************************************)
(*------------------*
| csp law |
*------------------*)
lemma cspT_IF_split:
"IF b THEN P ELSE Q =T (if b then P else Q)"
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
done
lemma cspT_IF_True:
"IF True THEN P ELSE Q =T P"
apply (rule cspT_rw_left)
apply (rule cspT_IF_split)
by (simp)
lemma cspT_IF_False:
"IF False THEN P ELSE Q =T Q"
apply (rule cspT_rw_left)
apply (rule cspT_IF_split)
by (simp)
lemmas cspT_IF = cspT_IF_True cspT_IF_False
(*-----------------------------------*
| Idempotence |
*-----------------------------------*)
lemma cspT_Ext_choice_idem:
"P [+] P =T P"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)+
done
lemma cspT_Int_choice_idem:
"P |~| P =T P"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)+
done
(*------------------*
| csp law |
*------------------*)
lemmas cspT_idem = cspT_Ext_choice_idem cspT_Int_choice_idem
(*-----------------------------------*
| Commutativity |
*-----------------------------------*)
(*********************************************************
Ext choice
*********************************************************)
lemma cspT_Ext_choice_commut:
"P [+] Q =T Q [+] P"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done
(*********************************************************
Int choice
*********************************************************)
lemma cspT_Int_choice_commut:
"P |~| Q =T Q |~| P"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done
(*********************************************************
Parallel
*********************************************************)
lemma cspT_Parallel_commut:
"P |[X]| Q =T Q |[X]| P"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)
apply (elim conjE exE)
apply (rule_tac x="ta" in exI)
apply (rule_tac x="s" in exI)
apply (simp add: par_tr_sym)
apply (rule, simp add: in_traces)
apply (elim conjE exE)
apply (rule_tac x="ta" in exI)
apply (rule_tac x="s" in exI)
apply (simp add: par_tr_sym)
done
(*------------------*
| csp law |
*------------------*)
lemmas cspT_commut = cspT_Ext_choice_commut cspT_Int_choice_commut cspT_Parallel_commut
(*-----------------------------------*
| Associativity |
*-----------------------------------*)
lemma cspT_Ext_choice_assoc:
"P [+] (Q [+] R) =T (P [+] Q) [+] R"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)+
done
lemma cspT_Ext_choice_assoc_sym:
"(P [+] Q) [+] R =T P [+] (Q [+] R)"
apply (rule cspT_sym)
apply (simp add: cspT_Ext_choice_assoc)
done
lemma cspT_Int_choice_assoc:
"P |~| (Q |~| R) =T (P |~| Q) |~| R"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)+
done
lemma cspT_Int_choice_assoc_sym:
"(P |~| Q) |~| R =T P |~| (Q |~| R)"
apply (rule cspT_sym)
apply (simp add: cspT_Int_choice_assoc)
done
(*------------------*
| csp law |
*------------------*)
lemmas cspT_assoc = cspT_Ext_choice_assoc cspT_Int_choice_assoc
lemmas cspT_assoc_sym = cspT_Ext_choice_assoc_sym cspT_Int_choice_assoc_sym
(*-----------------------------------*
| Left Commutativity |
*-----------------------------------*)
lemma cspT_Ext_choice_left_commut:
"P [+] (Q [+] R) =T Q [+] (P [+] R)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)+
done
lemma cspT_Int_choice_left_commut:
"P |~| (Q |~| R) =T Q |~| (P |~| R)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)+
done
lemmas cspT_left_commut =
cspT_Ext_choice_left_commut cspT_Int_choice_left_commut
(*-----------------------------------*
| Unit |
*-----------------------------------*)
(*** STOP [+] P ***)
lemma cspT_Ext_choice_unit_l:
"STOP [+] P =T P"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)
apply (force)
apply (rule, simp add: in_traces)
done
lemma cspT_Ext_choice_unit_r:
"P [+] STOP =T P"
apply (rule cspT_rw_left)
apply (rule cspT_Ext_choice_commut)
apply (simp add: cspT_Ext_choice_unit_l)
done
lemmas cspT_Ext_choice_unit =
cspT_Ext_choice_unit_l cspT_Ext_choice_unit_r
lemma cspT_Int_choice_unit_l:
"DIV |~| P =T P"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)
apply (force)
apply (rule, simp add: in_traces)
done
lemma cspT_Int_choice_unit_r:
"P |~| DIV =T P"
apply (rule cspT_rw_left)
apply (rule cspT_Int_choice_commut)
apply (simp add: cspT_Int_choice_unit_l)
done
lemmas cspT_Int_choice_unit =
cspT_Int_choice_unit_l cspT_Int_choice_unit_r
lemmas cspT_unit = cspT_Ext_choice_unit cspT_Int_choice_unit
(*-----------------------------------*
| !!-empty |
*-----------------------------------*)
lemma cspT_Rep_int_choice0_DIV:
"!! :{} .. Pf =T DIV"
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
done
lemma cspT_Rep_int_choice_fun_DIV:
"inj f ==> !!<f> :{} .. Pf =T DIV"
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
done
lemma cspT_Rep_int_choice2_DIV:
"!set :{} .. Pf =T DIV"
by (simp add: cspT_Rep_int_choice_fun_DIV)
lemma cspT_Rep_int_choice3_DIV:
"!nat :{} .. Pf =T DIV"
by (simp add: cspT_Rep_int_choice_fun_DIV)
lemma cspT_Rep_int_choice1_DIV:
"! :{} .. Pf =T DIV"
apply (simp add: Rep_int_choice_com_def)
apply (simp add: cspT_Rep_int_choice2_DIV)
done
lemmas cspT_Rep_int_choice_DIV = cspT_Rep_int_choice0_DIV
cspT_Rep_int_choice1_DIV
cspT_Rep_int_choice2_DIV
cspT_Rep_int_choice3_DIV
lemmas cspT_Rep_int_choice_DIV_sym = cspT_Rep_int_choice0_DIV[THEN cspT_sym]
lemmas cspT_Rep_int_choice_empty = cspT_Rep_int_choice_DIV
(*-----------------------------------*
| !!-unit |
*-----------------------------------*)
lemma cspT_Rep_int_choice_unit0:
"C ~= {} ==> !! c:C .. P =T P"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)
apply (force)
apply (rule, simp add: in_traces)
apply (force)
done
lemma cspT_Rep_int_choice_unit_fun:
"X ~= {} ==> !!<f> x:X .. P =T P"
apply (simp add: Rep_int_choice_fun_def)
apply (simp add: cspT_Rep_int_choice_unit0)
done
lemma cspT_Rep_int_choice_unit_com:
"X ~= {} ==> ! x:X .. P =T P"
apply (simp add: Rep_int_choice_com_def)
apply (simp add: cspT_Rep_int_choice_unit_fun)
done
lemmas cspT_Rep_int_choice_unit =
cspT_Rep_int_choice_unit0
cspT_Rep_int_choice_unit_fun
cspT_Rep_int_choice_unit_com
(*-----------------------------------*
| !!-const |
*-----------------------------------*)
(* const *)
lemma cspT_Rep_int_choice_const0:
"[| C ~= {} ; ALL c:C. Pf c = P |] ==> !! :C .. Pf =T P"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)
apply (force)
apply (rule, simp add: in_traces)
apply (force)
done
lemma cspT_Rep_int_choice_const_fun:
"[| inj f ; X ~= {} ; ALL x:X. Pf x = P |] ==> !!<f> :X .. Pf =T P"
apply (simp add: Rep_int_choice_fun_def)
apply (rule cspT_Rep_int_choice_const0)
apply (simp)
apply (intro ballI)
apply (simp add: image_iff)
apply (erule bexE)
apply (simp)
done
lemma cspT_Rep_int_choice_const_com:
"[| X ~= {} ; ALL x:X. Pf x = P |] ==> ! :X .. Pf =T P"
apply (simp add: Rep_int_choice_com_def)
apply (rule cspT_Rep_int_choice_const_fun)
apply (auto)
done
lemmas cspT_Rep_int_choice_const =
cspT_Rep_int_choice_const0
cspT_Rep_int_choice_const_fun
cspT_Rep_int_choice_const_com
(*-----------------------------------*
| |~|-!!-union |
*-----------------------------------*)
lemma cspT_Int_Rep_int_choice_union:
"(!! :C1 .. P1f) |~| (!! :C2 .. P2f)
=T (!! c:(C1 Un C2) ..
IF (c : C1 & c : C2) THEN (P1f c |~| P2f c)
ELSE IF (c : C1) THEN P1f c ELSE P2f c)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule)
apply (simp add: in_traces)
apply (elim conjE bexE disjE)
apply (simp_all)
apply (rule disjI2)
apply (rule_tac x="c" in bexI)
apply (simp)
apply (simp)
apply (rule disjI2)
apply (rule_tac x="c" in bexI)
apply (simp)
apply (simp)
(* => *)
apply (rule)
apply (simp add: in_traces)
apply (elim conjE exE bexE disjE)
apply (simp_all)
apply (elim conjE exE bexE disjE)
apply (simp_all)
apply (case_tac "c : C2")
apply (simp add: in_traces)
apply (force)
apply (simp add: in_traces)
apply (force)
apply (case_tac "c : C1")
apply (simp add: in_traces)
apply (force)
apply (simp add: in_traces)
apply (force)
done
(*-----------------------------------*
| !!-union-|~| |
*-----------------------------------*)
lemma cspT_Rep_int_choice_union_Int0:
"(!! :(C1 Un C2) .. Pf)
=T (!! c:C1 .. Pf c) |~| (!! c:C2 .. Pf c)"
apply (rule cspT_rw_right)
apply (rule cspT_Int_Rep_int_choice_union)
apply (rule cspT_decompo)
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF_split)
apply (simp)
apply (simp add: cspT_idem[THEN cspT_sym])
apply (intro impI)
apply (rule cspT_rw_right)
apply (rule cspT_IF_split)
apply (simp)
done
lemma cspT_Rep_int_choice_union_Int_fun:
"(!!<f> :(X1 Un X2) .. Pf)
=T (!!<f> x:X1 .. Pf x) |~| (!!<f> x:X2 .. Pf x)"
apply (simp add: Rep_int_choice_fun_def)
apply (rule cspT_rw_right)
apply (rule cspT_Rep_int_choice_union_Int0[THEN cspT_sym])
apply (rule cspT_decompo)
apply (auto)
done
lemma cspT_Rep_int_choice_union_Int_com:
"(! :(X1 Un X2) .. Pf)
=T (! x:X1 .. Pf x) |~| (! x:X2 .. Pf x)"
apply (simp add: Rep_int_choice_com_def)
apply (rule cspT_rw_right)
apply (rule cspT_Rep_int_choice_union_Int_fun[THEN cspT_sym])
apply (rule cspT_decompo)
apply (auto)
done
lemmas cspT_Rep_int_choice_union_Int
= cspT_Rep_int_choice_union_Int0
cspT_Rep_int_choice_union_Int_fun
cspT_Rep_int_choice_union_Int_com
(*********************************************************
Depth_rest
*********************************************************)
(*------------------*
| csp law |
*------------------*)
lemma cspT_Depth_rest_Zero:
"P |. 0 =T DIV"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule)
apply (simp add: in_traces)
apply (simp add: lengtht_zero)
(* <= *)
apply (rule)
apply (simp add: in_traces)
done
lemma cspT_Depth_rest_min:
"P |. n |. m =T P |. min n m"
apply (simp add: cspT_semantics)
apply (simp add: traces.simps)
apply (simp add: min_rs)
done
lemma cspT_Depth_rest_congE:
"[| P =T Q ; ALL m. P |. m =T Q |. m ==> S |] ==> S"
apply (simp add: cspT_semantics)
apply (simp add: traces.simps)
done
(*------------------*
| !nat-rest |
*------------------*)
lemma cspT_nat_Depth_rest_UNIV:
"P =T !nat n .. (P |. n)"
apply (simp add: cspT_eqT_semantics)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_traces)
apply (rule disjI2)
apply (rule_tac x="lengtht t" in exI)
apply (simp)
(* => *)
apply (rule)
apply (simp add: in_traces)
apply (erule disjE)
apply (simp_all)
done
lemma cspT_nat_Depth_rest_lengthset: "P =T !nat n:(lengthset P) .. (P |. n)"
apply (simp add: cspT_eqT_semantics)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_traces)
apply (rule disjI2)
apply (rule_tac x="lengtht t" in bexI)
apply (simp)
apply (simp add: lengthset_def)
apply (rule_tac x="t" in exI)
apply (simp)
(* => *)
apply (rule)
apply (simp add: in_traces)
apply (erule disjE)
apply (simp_all)
done
lemmas cspT_nat_Depth_rest = cspT_nat_Depth_rest_UNIV
cspT_nat_Depth_rest_lengthset
(*------------------*
| ?-partial |
*------------------*)
lemma cspT_Ext_pre_choice_partial:
"? :X -> Pf =T ? x:X -> (IF (x:X) THEN Pf x ELSE DIV)"
apply (rule cspT_decompo)
apply (simp_all)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (simp)
done
(*------------------*
| !!-partial |
*------------------*)
lemma cspT_Rep_int_choice_partial0:
"!! :C .. Pf =T !! c:C .. (IF (c:C) THEN Pf c ELSE DIV)"
apply (rule cspT_decompo)
apply (simp_all)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (simp)
done
lemma cspT_Rep_int_choice_partial_fun:
"inj f ==> !!<f> :X .. Pf =T !!<f> x:X .. (IF (x:X) THEN Pf x ELSE DIV)"
apply (simp add: Rep_int_choice_fun_def)
apply (rule cspT_rw_left)
apply (rule cspT_Rep_int_choice_partial0)
apply (rule cspT_decompo)
apply (simp)
apply (rule cspT_decompo)
apply (auto)
done
lemma cspT_Rep_int_choice_partial_com:
"! :X .. Pf =T ! x:X .. (IF (x:X) THEN Pf x ELSE DIV)"
apply (simp add: Rep_int_choice_com_def)
apply (rule cspT_rw_left)
apply (rule cspT_Rep_int_choice_partial_fun)
apply (simp)
apply (rule cspT_decompo)
apply (simp)
apply (rule cspT_decompo)
apply (auto)
done
lemmas cspT_Rep_int_choice_partial =
cspT_Rep_int_choice_partial0
cspT_Rep_int_choice_partial_fun
cspT_Rep_int_choice_partial_com
end
lemma cspT_IF_split:
IF b THEN P ELSE Q =T (if b then P else Q)
lemma cspT_IF_True:
IF True THEN P ELSE Q =T P
lemma cspT_IF_False:
IF False THEN P ELSE Q =T Q
lemmas cspT_IF:
IF True THEN P ELSE Q =T P
IF False THEN P ELSE Q =T Q
lemmas cspT_IF:
IF True THEN P ELSE Q =T P
IF False THEN P ELSE Q =T Q
lemma cspT_Ext_choice_idem:
P [+] P =T P
lemma cspT_Int_choice_idem:
P |~| P =T P
lemmas cspT_idem:
P [+] P =T P
P |~| P =T P
lemmas cspT_idem:
P [+] P =T P
P |~| P =T P
lemma cspT_Ext_choice_commut:
P [+] Q =T Q [+] P
lemma cspT_Int_choice_commut:
P |~| Q =T Q |~| P
lemma cspT_Parallel_commut:
P |[X]| Q =T Q |[X]| P
lemmas cspT_commut:
P [+] Q =T Q [+] P
P |~| Q =T Q |~| P
P |[X]| Q =T Q |[X]| P
lemmas cspT_commut:
P [+] Q =T Q [+] P
P |~| Q =T Q |~| P
P |[X]| Q =T Q |[X]| P
lemma cspT_Ext_choice_assoc:
P [+] (Q [+] R) =T P [+] Q [+] R
lemma cspT_Ext_choice_assoc_sym:
P [+] Q [+] R =T P [+] (Q [+] R)
lemma cspT_Int_choice_assoc:
P |~| (Q |~| R) =T P |~| Q |~| R
lemma cspT_Int_choice_assoc_sym:
P |~| Q |~| R =T P |~| (Q |~| R)
lemmas cspT_assoc:
P [+] (Q [+] R) =T P [+] Q [+] R
P |~| (Q |~| R) =T P |~| Q |~| R
lemmas cspT_assoc:
P [+] (Q [+] R) =T P [+] Q [+] R
P |~| (Q |~| R) =T P |~| Q |~| R
lemmas cspT_assoc_sym:
P [+] Q [+] R =T P [+] (Q [+] R)
P |~| Q |~| R =T P |~| (Q |~| R)
lemmas cspT_assoc_sym:
P [+] Q [+] R =T P [+] (Q [+] R)
P |~| Q |~| R =T P |~| (Q |~| R)
lemma cspT_Ext_choice_left_commut:
P [+] (Q [+] R) =T Q [+] (P [+] R)
lemma cspT_Int_choice_left_commut:
P |~| (Q |~| R) =T Q |~| (P |~| R)
lemmas cspT_left_commut:
P [+] (Q [+] R) =T Q [+] (P [+] R)
P |~| (Q |~| R) =T Q |~| (P |~| R)
lemmas cspT_left_commut:
P [+] (Q [+] R) =T Q [+] (P [+] R)
P |~| (Q |~| R) =T Q |~| (P |~| R)
lemma cspT_Ext_choice_unit_l:
STOP [+] P =T P
lemma cspT_Ext_choice_unit_r:
P [+] STOP =T P
lemmas cspT_Ext_choice_unit:
STOP [+] P =T P
P [+] STOP =T P
lemmas cspT_Ext_choice_unit:
STOP [+] P =T P
P [+] STOP =T P
lemma cspT_Int_choice_unit_l:
DIV |~| P =T P
lemma cspT_Int_choice_unit_r:
P |~| DIV =T P
lemmas cspT_Int_choice_unit:
DIV |~| P =T P
P |~| DIV =T P
lemmas cspT_Int_choice_unit:
DIV |~| P =T P
P |~| DIV =T P
lemmas cspT_unit:
STOP [+] P =T P
P [+] STOP =T P
DIV |~| P =T P
P |~| DIV =T P
lemmas cspT_unit:
STOP [+] P =T P
P [+] STOP =T P
DIV |~| P =T P
P |~| DIV =T P
lemma cspT_Rep_int_choice0_DIV:
!! :{} .. Pf =T DIV
lemma cspT_Rep_int_choice_fun_DIV:
inj f ==> !!<f> :{} .. Pf =T DIV
lemma cspT_Rep_int_choice2_DIV:
!set :{} .. Pf =T DIV
lemma cspT_Rep_int_choice3_DIV:
!nat :{} .. Pf =T DIV
lemma cspT_Rep_int_choice1_DIV:
! :{} .. Pf =T DIV
lemmas cspT_Rep_int_choice_DIV:
!! :{} .. Pf =T DIV
! :{} .. Pf =T DIV
!set :{} .. Pf =T DIV
!nat :{} .. Pf =T DIV
lemmas cspT_Rep_int_choice_DIV:
!! :{} .. Pf =T DIV
! :{} .. Pf =T DIV
!set :{} .. Pf =T DIV
!nat :{} .. Pf =T DIV
lemmas cspT_Rep_int_choice_DIV_sym:
DIV =T !! :{} .. Pf1
lemmas cspT_Rep_int_choice_DIV_sym:
DIV =T !! :{} .. Pf1
lemmas cspT_Rep_int_choice_empty:
!! :{} .. Pf =T DIV
! :{} .. Pf =T DIV
!set :{} .. Pf =T DIV
!nat :{} .. Pf =T DIV
lemmas cspT_Rep_int_choice_empty:
!! :{} .. Pf =T DIV
! :{} .. Pf =T DIV
!set :{} .. Pf =T DIV
!nat :{} .. Pf =T DIV
lemma cspT_Rep_int_choice_unit0:
C ≠ {} ==> !! c:C .. P =T P
lemma cspT_Rep_int_choice_unit_fun:
X ≠ {} ==> !!<f> x:X .. P =T P
lemma cspT_Rep_int_choice_unit_com:
X ≠ {} ==> ! x:X .. P =T P
lemmas cspT_Rep_int_choice_unit:
C ≠ {} ==> !! c:C .. P =T P
X ≠ {} ==> !!<f> x:X .. P =T P
X ≠ {} ==> ! x:X .. P =T P
lemmas cspT_Rep_int_choice_unit:
C ≠ {} ==> !! c:C .. P =T P
X ≠ {} ==> !!<f> x:X .. P =T P
X ≠ {} ==> ! x:X .. P =T P
lemma cspT_Rep_int_choice_const0:
[| C ≠ {}; ∀c∈C. Pf c = P |] ==> !! :C .. Pf =T P
lemma cspT_Rep_int_choice_const_fun:
[| inj f; X ≠ {}; ∀x∈X. Pf x = P |] ==> !!<f> :X .. Pf =T P
lemma cspT_Rep_int_choice_const_com:
[| X ≠ {}; ∀x∈X. Pf x = P |] ==> ! :X .. Pf =T P
lemmas cspT_Rep_int_choice_const:
[| C ≠ {}; ∀c∈C. Pf c = P |] ==> !! :C .. Pf =T P
[| inj f; X ≠ {}; ∀x∈X. Pf x = P |] ==> !!<f> :X .. Pf =T P
[| X ≠ {}; ∀x∈X. Pf x = P |] ==> ! :X .. Pf =T P
lemmas cspT_Rep_int_choice_const:
[| C ≠ {}; ∀c∈C. Pf c = P |] ==> !! :C .. Pf =T P
[| inj f; X ≠ {}; ∀x∈X. Pf x = P |] ==> !!<f> :X .. Pf =T P
[| X ≠ {}; ∀x∈X. Pf x = P |] ==> ! :X .. Pf =T P
lemma cspT_Int_Rep_int_choice_union:
!! :C1.0 .. P1f |~| !! :C2.0 .. P2f =T !! c:(C1.0 ∪ C2.0) .. IF (c ∈ C1.0 ∧ c ∈ C2.0) THEN P1f c |~| P2f c ELSE IF (c ∈ C1.0) THEN P1f c ELSE P2f c
lemma cspT_Rep_int_choice_union_Int0:
!! :(C1.0 ∪ C2.0) .. Pf =T !! :C1.0 .. Pf |~| !! :C2.0 .. Pf
lemma cspT_Rep_int_choice_union_Int_fun:
!!<f> :(X1.0 ∪ X2.0) .. Pf =T !!<f> :X1.0 .. Pf |~| !!<f> :X2.0 .. Pf
lemma cspT_Rep_int_choice_union_Int_com:
! :(X1.0 ∪ X2.0) .. Pf =T ! :X1.0 .. Pf |~| ! :X2.0 .. Pf
lemmas cspT_Rep_int_choice_union_Int:
!! :(C1.0 ∪ C2.0) .. Pf =T !! :C1.0 .. Pf |~| !! :C2.0 .. Pf
!!<f> :(X1.0 ∪ X2.0) .. Pf =T !!<f> :X1.0 .. Pf |~| !!<f> :X2.0 .. Pf
! :(X1.0 ∪ X2.0) .. Pf =T ! :X1.0 .. Pf |~| ! :X2.0 .. Pf
lemmas cspT_Rep_int_choice_union_Int:
!! :(C1.0 ∪ C2.0) .. Pf =T !! :C1.0 .. Pf |~| !! :C2.0 .. Pf
!!<f> :(X1.0 ∪ X2.0) .. Pf =T !!<f> :X1.0 .. Pf |~| !!<f> :X2.0 .. Pf
! :(X1.0 ∪ X2.0) .. Pf =T ! :X1.0 .. Pf |~| ! :X2.0 .. Pf
lemma cspT_Depth_rest_Zero:
P |. 0 =T DIV
lemma cspT_Depth_rest_min:
P |. n |. m =T P |. min n m
lemma cspT_Depth_rest_congE:
[| P =T Q; ∀m. P |. m =T Q |. m ==> S |] ==> S
lemma cspT_nat_Depth_rest_UNIV:
P =T !nat :UNIV .. Depth_rest P
lemma cspT_nat_Depth_rest_lengthset:
P =T !nat :lengthset P .. Depth_rest P
lemmas cspT_nat_Depth_rest:
P =T !nat :UNIV .. Depth_rest P
P =T !nat :lengthset P .. Depth_rest P
lemmas cspT_nat_Depth_rest:
P =T !nat :UNIV .. Depth_rest P
P =T !nat :lengthset P .. Depth_rest P
lemma cspT_Ext_pre_choice_partial:
? :X -> Pf =T ? x:X -> IF (x ∈ X) THEN Pf x ELSE DIV
lemma cspT_Rep_int_choice_partial0:
!! :C .. Pf =T !! c:C .. IF (c ∈ C) THEN Pf c ELSE DIV
lemma cspT_Rep_int_choice_partial_fun:
inj f ==> !!<f> :X .. Pf =T !!<f> x:X .. IF (x ∈ X) THEN Pf x ELSE DIV
lemma cspT_Rep_int_choice_partial_com:
! :X .. Pf =T ! x:X .. IF (x ∈ X) THEN Pf x ELSE DIV
lemmas cspT_Rep_int_choice_partial:
!! :C .. Pf =T !! c:C .. IF (c ∈ C) THEN Pf c ELSE DIV
inj f ==> !!<f> :X .. Pf =T !!<f> x:X .. IF (x ∈ X) THEN Pf x ELSE DIV
! :X .. Pf =T ! x:X .. IF (x ∈ X) THEN Pf x ELSE DIV
lemmas cspT_Rep_int_choice_partial:
!! :C .. Pf =T !! c:C .. IF (c ∈ C) THEN Pf c ELSE DIV
inj f ==> !!<f> :X .. Pf =T !!<f> x:X .. IF (x ∈ X) THEN Pf x ELSE DIV
! :X .. Pf =T ! x:X .. IF (x ∈ X) THEN Pf x ELSE DIV