Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law_decompo(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | June 2005 (modified) | | September 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | December 2005 (modified) | | April 2006 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_T_law_decompo = CSP_T_traces: (*------------------------------------------------* | | | laws for monotonicity and congruence | | | *------------------------------------------------*) (********************************************************* Act_prefix mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspT_Act_prefix_mono: "[| a = b ; P <=T Q |] ==> a -> P <=T b -> Q" apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (intro allI impI) apply (simp add: in_traces) apply (fast) done lemma cspT_Act_prefix_cong: "[| a = b ; P =T Q |] ==> a -> P =T b -> Q" apply (simp add: cspT_eq_ref_iff) apply (simp add: cspT_Act_prefix_mono) done (********************************************************* Ext_pre_choice mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspT_Ext_pre_choice_mono: "[| X = Y ; !! a. a:Y ==> Pf a <=T Qf a |] ==> ? :X -> Pf <=T ? :Y -> Qf" apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (intro allI impI) apply (simp add: in_traces) apply (fast) done lemma cspT_Ext_pre_choice_cong: "[| X = Y ; !! a. a:Y ==> Pf a =T Qf a |] ==> ? :X -> Pf =T ? :Y -> Qf" by (simp add: cspT_eq_ref_iff cspT_Ext_pre_choice_mono) (********************************************************* Ext choice mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspT_Ext_choice_mono: "[| P1 <=T Q1 ; P2 <=T Q2 |] ==> P1 [+] P2 <=T Q1 [+] Q2" apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (intro allI impI) apply (simp add: in_traces) apply (fast) done lemma cspT_Ext_choice_cong: "[| P1 =T Q1 ; P2 =T Q2 |] ==> P1 [+] P2 =T Q1 [+] Q2" by (simp add: cspT_eq_ref_iff cspT_Ext_choice_mono) (********************************************************* Int choice mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspT_Int_choice_mono: "[| P1 <=T Q1 ; P2 <=T Q2 |] ==> P1 |~| P2 <=T Q1 |~| Q2" apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (intro allI impI) apply (simp add: in_traces) apply (fast) done lemma cspT_Int_choice_cong: "[| P1 =T Q1 ; P2 =T Q2 |] ==> P1 |~| P2 =T Q1 |~| Q2" by (simp add: cspT_eq_ref_iff cspT_Int_choice_mono) (********************************************************* replicated internal choice *********************************************************) (*------------------* | csp law | *------------------*) lemma cspT_Rep_int_choice_mono0: "[| C1 = C2 ; !! c. c:C2 ==> Pf c <=T Qf c |] ==> !! :C1 .. Pf <=T !! :C2 .. Qf" apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (intro allI impI) apply (simp add: in_traces) apply (fast) done lemma cspT_Rep_int_choice_cong0: "[| C1 = C2 ; !! c. c:C2 ==> Pf c =T Qf c |] ==> !! :C1 .. Pf =T !! :C2 .. Qf" by (simp add: cspT_eq_ref_iff cspT_Rep_int_choice_mono0) (*** fun ***) lemma cspT_Rep_int_choice_mono_fun: "[| inj f ; X = Y ; !! a. a:Y ==> Pf a <=T Qf a |] ==> !!<f> :X .. Pf <=T !!<f> :Y .. Qf" apply (simp add: Rep_int_choice_fun_def) apply (rule cspT_Rep_int_choice_mono0) apply (auto) done lemma cspT_Rep_int_choice_cong_fun: "[| inj f ; X = Y ; !! a. a:Y ==> Pf a =T Qf a |] ==> !!<f> :X .. Pf =T !!<f> :Y .. Qf" by (simp add: cspT_eq_ref_iff cspT_Rep_int_choice_mono_fun) (*** set ***) lemma cspT_Rep_int_choice_mono_set: "[| Xs = Ys ; !! X. X:Ys ==> Pf X <=T Qf X |] ==> !set :Xs .. Pf <=T !set :Ys .. Qf" by (simp add: cspT_Rep_int_choice_mono_fun) lemma cspT_Rep_int_choice_cong_set: "[| Xs = Ys ; !! X. X:Ys ==> Pf X =T Qf X |] ==> !set :Xs .. Pf =T !set :Ys .. Qf" by (simp add: cspT_Rep_int_choice_cong_fun) (*** nat ***) lemma cspT_Rep_int_choice_mono_nat: "[| N1 = N2 ; !! n. n:N2 ==> Pf n <=T Qf n |] ==> !nat :N1 .. Pf <=T !nat :N2 .. Qf" by (simp add: cspT_Rep_int_choice_mono_fun) lemma cspT_Rep_int_choice_cong_nat: "[| N1 = N2 ; !! n. n:N2 ==> Pf n =T Qf n |] ==> !nat :N1 .. Pf =T !nat :N2 .. Qf" by (simp add: cspT_Rep_int_choice_cong_fun) (*** com ***) lemma cspT_Rep_int_choice_mono_com: "[| X = Y ; !! a. a:Y ==> Pf a <=T Qf a |] ==> ! :X .. Pf <=T ! :Y .. Qf" apply (simp add: Rep_int_choice_com_def) apply (rule cspT_Rep_int_choice_mono_set) by (auto) lemma cspT_Rep_int_choice_cong_com: "[| X = Y ; !! a. a:Y ==> Pf a =T Qf a |] ==> ! :X .. Pf =T ! :Y .. Qf" apply (simp add: Rep_int_choice_com_def) apply (rule cspT_Rep_int_choice_cong_set) by (auto) (*** f ***) lemma cspT_Rep_int_choice_mono_f: "[| inj f ; X = Y ; !! a. a:Y ==> Pf a <=T Qf a |] ==> !<f> :X .. Pf <=T !<f> :Y .. Qf" apply (simp add: Rep_int_choice_f_def) apply (rule cspT_Rep_int_choice_mono_com) apply (auto) done lemma cspT_Rep_int_choice_cong_f: "[| inj f ; X = Y ; !! a. a:Y ==> Pf a =T Qf a |] ==> !<f> :X .. Pf =T !<f> :Y .. Qf" apply (simp add: Rep_int_choice_f_def) apply (rule cspT_Rep_int_choice_cong_com) apply (auto) done lemmas cspT_Rep_int_choice_mono = cspT_Rep_int_choice_mono0 cspT_Rep_int_choice_mono_com cspT_Rep_int_choice_mono_set cspT_Rep_int_choice_mono_nat cspT_Rep_int_choice_mono_f lemmas cspT_Rep_int_choice_cong = cspT_Rep_int_choice_cong0 cspT_Rep_int_choice_cong_com cspT_Rep_int_choice_cong_set cspT_Rep_int_choice_cong_nat cspT_Rep_int_choice_cong_f (********************************************************* IF mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspT_IF_mono: "[| b1 = b2 ; P1 <=T Q1 ; P2 <=T Q2 |] ==> IF b1 THEN P1 ELSE P2 <=T IF b2 THEN Q1 ELSE Q2" apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (intro allI impI) apply (simp add: in_traces) done lemma cspT_IF_cong: "[| b1 = b2 ; P1 =T Q1 ; P2 =T Q2 |] ==> IF b1 THEN P1 ELSE P2 =T IF b2 THEN Q1 ELSE Q2" by (simp add: cspT_eq_ref_iff cspT_IF_mono) (********************************************************* Parallel mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspT_Parallel_mono: "[| X = Y ; P1 <=T Q1 ; P2 <=T Q2 |] ==> P1 |[X]| P2 <=T Q1 |[Y]| Q2" apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (intro allI impI) apply (simp add: in_traces) apply (fast) done lemma cspT_Parallel_cong: "[| X = Y ; P1 =T Q1 ; P2 =T Q2 |] ==> P1 |[X]| P2 =T Q1 |[Y]| Q2" by (simp add: cspT_eq_ref_iff cspT_Parallel_mono) (********************************************************* Hiding mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspT_Hiding_mono: "[| X = Y ; P <=T Q |] ==> P -- X <=T Q -- Y" apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (intro allI impI) apply (simp add: in_traces) apply (fast) done lemma cspT_Hiding_cong: "[| X = Y ; P =T Q |] ==> P -- X =T Q -- Y" by (simp add: cspT_eq_ref_iff cspT_Hiding_mono) (********************************************************* Renaming mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspT_Renaming_mono: "[| r1 = r2 ; P <=T Q |] ==> P [[r1]] <=T Q [[r2]]" apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (intro allI impI) apply (simp add: in_traces) apply (fast) done lemma cspT_Renaming_cong: "[| r1 = r2 ; P =T Q |] ==> P [[r1]] =T Q [[r2]]" by (simp add: cspT_eq_ref_iff cspT_Renaming_mono) (********************************************************* Sequential composition mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspT_Seq_compo_mono: "[| P1 <=T Q1 ; P2 <=T Q2 |] ==> P1 ;; P2 <=T Q1 ;; Q2" apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (intro allI impI) apply (simp add: in_traces) apply (fast) done lemma cspT_Seq_compo_cong: "[| P1 =T Q1 ; P2 =T Q2 |] ==> P1 ;; P2 =T Q1 ;; Q2" by (simp add: cspT_eq_ref_iff cspT_Seq_compo_mono) (********************************************************* Depth_rest mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspT_Depth_rest_mono: "[| n1 = n2 ; P <=T Q |] ==> P |. n1 <=T Q |. n2" apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (intro allI impI) apply (simp add: in_traces) done lemma cspT_Depth_rest_cong: "[| n1 = n2 ; P =T Q |] ==> P |. n1 =T Q |. n2" by (simp add: cspT_eq_ref_iff cspT_Depth_rest_mono) (********************************************************* Timeout mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspT_Timeout_mono: "[| P1 <=T Q1 ; P2 <=T Q2 |] ==> P1 [> P2 <=T Q1 [> Q2" apply (rule cspT_Ext_choice_mono) apply (rule cspT_Int_choice_mono) by (simp_all) lemma cspT_Timeout_cong: "[| P1 =T Q1 ; P2 =T Q2 |] ==> P1 [> P2 =T Q1 [> Q2" by (simp add: cspT_eq_ref_iff cspT_Timeout_mono) (*------------------------------------------------------* | alias | *------------------------------------------------------*) lemmas cspT_free_mono = cspT_Ext_choice_mono cspT_Int_choice_mono cspT_Parallel_mono cspT_Hiding_mono cspT_Renaming_mono cspT_Seq_compo_mono cspT_Depth_rest_mono lemmas cspT_mono = cspT_free_mono cspT_Act_prefix_mono cspT_Ext_pre_choice_mono cspT_Rep_int_choice_mono cspT_IF_mono lemmas cspT_free_cong = cspT_Ext_choice_cong cspT_Int_choice_cong cspT_Parallel_cong cspT_Hiding_cong cspT_Renaming_cong cspT_Seq_compo_cong cspT_Depth_rest_cong lemmas cspT_cong = cspT_free_cong cspT_Act_prefix_cong cspT_Ext_pre_choice_cong cspT_Rep_int_choice_cong cspT_IF_cong lemmas cspT_free_decompo = cspT_free_mono cspT_free_cong lemmas cspT_decompo = cspT_mono cspT_cong lemmas cspT_rm_head_mono = cspT_Act_prefix_mono cspT_Ext_pre_choice_mono lemmas cspT_rm_head_cong = cspT_Act_prefix_cong cspT_Ext_pre_choice_cong lemmas cspT_rm_head = cspT_rm_head_mono cspT_rm_head_cong (*-------------------------------------------------------* | decomposition with ALL and EX | *-------------------------------------------------------*) (*** Rep_int_choice ***) lemma cspT_Rep_int_choice_decompo_ALL_EX_ref: "ALL c2:C2. EX c1:C1. Pf c1 <=T Qf c2 ==> !! :C1 .. Pf <=T !! :C2 .. Qf" apply (simp add: cspT_semantics) apply (rule, simp add: in_traces) apply (erule disjE) apply (simp) apply (elim bexE) apply (drule_tac x="c" in bspec, simp) apply (erule bexE) apply (rule disjI2) apply (rule_tac x="c1" in bexI) apply (erule subdomTE) apply (simp_all) done lemma cspT_Rep_int_choice_decompo_ALL_EX_eq: "[| ALL c1:C1. EX c2:C2. Pf c1 =T Qf c2 ; ALL c2:C2. EX c1:C1. Pf c1 =T Qf c2 |] ==> !! :C1 .. Pf =T !! :C2 .. Qf" apply (simp add: cspT_eq_ref_iff) apply (rule conjI) apply (rule cspT_Rep_int_choice_decompo_ALL_EX_ref) apply (force) apply (rule cspT_Rep_int_choice_decompo_ALL_EX_ref) apply (force) done lemmas cspT_Rep_int_choice_decompo_ALL_EX = cspT_Rep_int_choice_decompo_ALL_EX_ref cspT_Rep_int_choice_decompo_ALL_EX_eq end
lemma cspT_Act_prefix_mono:
[| a = b; P <=T Q |] ==> a -> P <=T b -> Q
lemma cspT_Act_prefix_cong:
[| a = b; P =T Q |] ==> a -> P =T b -> Q
lemma cspT_Ext_pre_choice_mono:
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ? :X -> Pf <=T ? :Y -> Qf
lemma cspT_Ext_pre_choice_cong:
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ? :X -> Pf =T ? :Y -> Qf
lemma cspT_Ext_choice_mono:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 [+] P2.0 <=T Q1.0 [+] Q2.0
lemma cspT_Ext_choice_cong:
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 [+] P2.0 =T Q1.0 [+] Q2.0
lemma cspT_Int_choice_mono:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |~| P2.0 <=T Q1.0 |~| Q2.0
lemma cspT_Int_choice_cong:
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |~| P2.0 =T Q1.0 |~| Q2.0
lemma cspT_Rep_int_choice_mono0:
[| C1.0 = C2.0; !!c. c ∈ C2.0 ==> Pf c <=T Qf c |] ==> !! :C1.0 .. Pf <=T !! :C2.0 .. Qf
lemma cspT_Rep_int_choice_cong0:
[| C1.0 = C2.0; !!c. c ∈ C2.0 ==> Pf c =T Qf c |] ==> !! :C1.0 .. Pf =T !! :C2.0 .. Qf
lemma cspT_Rep_int_choice_mono_fun:
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> !!<f> :X .. Pf <=T !!<f> :Y .. Qf
lemma cspT_Rep_int_choice_cong_fun:
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> !!<f> :X .. Pf =T !!<f> :Y .. Qf
lemma cspT_Rep_int_choice_mono_set:
[| Xs = Ys; !!X. X ∈ Ys ==> Pf X <=T Qf X |] ==> !set :Xs .. Pf <=T !set :Ys .. Qf
lemma cspT_Rep_int_choice_cong_set:
[| Xs = Ys; !!X. X ∈ Ys ==> Pf X =T Qf X |] ==> !set :Xs .. Pf =T !set :Ys .. Qf
lemma cspT_Rep_int_choice_mono_nat:
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n <=T Qf n |] ==> !nat :N1.0 .. Pf <=T !nat :N2.0 .. Qf
lemma cspT_Rep_int_choice_cong_nat:
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n =T Qf n |] ==> !nat :N1.0 .. Pf =T !nat :N2.0 .. Qf
lemma cspT_Rep_int_choice_mono_com:
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ! :X .. Pf <=T ! :Y .. Qf
lemma cspT_Rep_int_choice_cong_com:
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ! :X .. Pf =T ! :Y .. Qf
lemma cspT_Rep_int_choice_mono_f:
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> !<f> :X .. Pf <=T !<f> :Y .. Qf
lemma cspT_Rep_int_choice_cong_f:
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> !<f> :X .. Pf =T !<f> :Y .. Qf
lemmas cspT_Rep_int_choice_mono:
[| C1.0 = C2.0; !!c. c ∈ C2.0 ==> Pf c <=T Qf c |] ==> !! :C1.0 .. Pf <=T !! :C2.0 .. Qf
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ! :X .. Pf <=T ! :Y .. Qf
[| Xs = Ys; !!X. X ∈ Ys ==> Pf X <=T Qf X |] ==> !set :Xs .. Pf <=T !set :Ys .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n <=T Qf n |] ==> !nat :N1.0 .. Pf <=T !nat :N2.0 .. Qf
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> !<f> :X .. Pf <=T !<f> :Y .. Qf
lemmas cspT_Rep_int_choice_mono:
[| C1.0 = C2.0; !!c. c ∈ C2.0 ==> Pf c <=T Qf c |] ==> !! :C1.0 .. Pf <=T !! :C2.0 .. Qf
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ! :X .. Pf <=T ! :Y .. Qf
[| Xs = Ys; !!X. X ∈ Ys ==> Pf X <=T Qf X |] ==> !set :Xs .. Pf <=T !set :Ys .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n <=T Qf n |] ==> !nat :N1.0 .. Pf <=T !nat :N2.0 .. Qf
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> !<f> :X .. Pf <=T !<f> :Y .. Qf
lemmas cspT_Rep_int_choice_cong:
[| C1.0 = C2.0; !!c. c ∈ C2.0 ==> Pf c =T Qf c |] ==> !! :C1.0 .. Pf =T !! :C2.0 .. Qf
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ! :X .. Pf =T ! :Y .. Qf
[| Xs = Ys; !!X. X ∈ Ys ==> Pf X =T Qf X |] ==> !set :Xs .. Pf =T !set :Ys .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n =T Qf n |] ==> !nat :N1.0 .. Pf =T !nat :N2.0 .. Qf
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> !<f> :X .. Pf =T !<f> :Y .. Qf
lemmas cspT_Rep_int_choice_cong:
[| C1.0 = C2.0; !!c. c ∈ C2.0 ==> Pf c =T Qf c |] ==> !! :C1.0 .. Pf =T !! :C2.0 .. Qf
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ! :X .. Pf =T ! :Y .. Qf
[| Xs = Ys; !!X. X ∈ Ys ==> Pf X =T Qf X |] ==> !set :Xs .. Pf =T !set :Ys .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n =T Qf n |] ==> !nat :N1.0 .. Pf =T !nat :N2.0 .. Qf
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> !<f> :X .. Pf =T !<f> :Y .. Qf
lemma cspT_IF_mono:
[| b1.0 = b2.0; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> IF b1.0 THEN P1.0 ELSE P2.0 <=T IF b2.0 THEN Q1.0 ELSE Q2.0
lemma cspT_IF_cong:
[| b1.0 = b2.0; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> IF b1.0 THEN P1.0 ELSE P2.0 =T IF b2.0 THEN Q1.0 ELSE Q2.0
lemma cspT_Parallel_mono:
[| X = Y; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |[X]| P2.0 <=T Q1.0 |[Y]| Q2.0
lemma cspT_Parallel_cong:
[| X = Y; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |[X]| P2.0 =T Q1.0 |[Y]| Q2.0
lemma cspT_Hiding_mono:
[| X = Y; P <=T Q |] ==> P -- X <=T Q -- Y
lemma cspT_Hiding_cong:
[| X = Y; P =T Q |] ==> P -- X =T Q -- Y
lemma cspT_Renaming_mono:
[| r1.0 = r2.0; P <=T Q |] ==> P [[r1.0]] <=T Q [[r2.0]]
lemma cspT_Renaming_cong:
[| r1.0 = r2.0; P =T Q |] ==> P [[r1.0]] =T Q [[r2.0]]
lemma cspT_Seq_compo_mono:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 ;; P2.0 <=T Q1.0 ;; Q2.0
lemma cspT_Seq_compo_cong:
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 ;; P2.0 =T Q1.0 ;; Q2.0
lemma cspT_Depth_rest_mono:
[| n1.0 = n2.0; P <=T Q |] ==> P |. n1.0 <=T Q |. n2.0
lemma cspT_Depth_rest_cong:
[| n1.0 = n2.0; P =T Q |] ==> P |. n1.0 =T Q |. n2.0
lemma cspT_Timeout_mono:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 [> P2.0 <=T Q1.0 [> Q2.0
lemma cspT_Timeout_cong:
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 [> P2.0 =T Q1.0 [> Q2.0
lemmas cspT_free_mono:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 [+] P2.0 <=T Q1.0 [+] Q2.0
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |~| P2.0 <=T Q1.0 |~| Q2.0
[| X = Y; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |[X]| P2.0 <=T Q1.0 |[Y]| Q2.0
[| X = Y; P <=T Q |] ==> P -- X <=T Q -- Y
[| r1.0 = r2.0; P <=T Q |] ==> P [[r1.0]] <=T Q [[r2.0]]
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 ;; P2.0 <=T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=T Q |] ==> P |. n1.0 <=T Q |. n2.0
lemmas cspT_free_mono:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 [+] P2.0 <=T Q1.0 [+] Q2.0
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |~| P2.0 <=T Q1.0 |~| Q2.0
[| X = Y; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |[X]| P2.0 <=T Q1.0 |[Y]| Q2.0
[| X = Y; P <=T Q |] ==> P -- X <=T Q -- Y
[| r1.0 = r2.0; P <=T Q |] ==> P [[r1.0]] <=T Q [[r2.0]]
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 ;; P2.0 <=T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=T Q |] ==> P |. n1.0 <=T Q |. n2.0
lemmas cspT_mono:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 [+] P2.0 <=T Q1.0 [+] Q2.0
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |~| P2.0 <=T Q1.0 |~| Q2.0
[| X = Y; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |[X]| P2.0 <=T Q1.0 |[Y]| Q2.0
[| X = Y; P <=T Q |] ==> P -- X <=T Q -- Y
[| r1.0 = r2.0; P <=T Q |] ==> P [[r1.0]] <=T Q [[r2.0]]
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 ;; P2.0 <=T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=T Q |] ==> P |. n1.0 <=T Q |. n2.0
[| a = b; P <=T Q |] ==> a -> P <=T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ? :X -> Pf <=T ? :Y -> Qf
[| C1.0 = C2.0; !!c. c ∈ C2.0 ==> Pf c <=T Qf c |] ==> !! :C1.0 .. Pf <=T !! :C2.0 .. Qf
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ! :X .. Pf <=T ! :Y .. Qf
[| Xs = Ys; !!X. X ∈ Ys ==> Pf X <=T Qf X |] ==> !set :Xs .. Pf <=T !set :Ys .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n <=T Qf n |] ==> !nat :N1.0 .. Pf <=T !nat :N2.0 .. Qf
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> !<f> :X .. Pf <=T !<f> :Y .. Qf
[| b1.0 = b2.0; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> IF b1.0 THEN P1.0 ELSE P2.0 <=T IF b2.0 THEN Q1.0 ELSE Q2.0
lemmas cspT_mono:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 [+] P2.0 <=T Q1.0 [+] Q2.0
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |~| P2.0 <=T Q1.0 |~| Q2.0
[| X = Y; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |[X]| P2.0 <=T Q1.0 |[Y]| Q2.0
[| X = Y; P <=T Q |] ==> P -- X <=T Q -- Y
[| r1.0 = r2.0; P <=T Q |] ==> P [[r1.0]] <=T Q [[r2.0]]
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 ;; P2.0 <=T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=T Q |] ==> P |. n1.0 <=T Q |. n2.0
[| a = b; P <=T Q |] ==> a -> P <=T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ? :X -> Pf <=T ? :Y -> Qf
[| C1.0 = C2.0; !!c. c ∈ C2.0 ==> Pf c <=T Qf c |] ==> !! :C1.0 .. Pf <=T !! :C2.0 .. Qf
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ! :X .. Pf <=T ! :Y .. Qf
[| Xs = Ys; !!X. X ∈ Ys ==> Pf X <=T Qf X |] ==> !set :Xs .. Pf <=T !set :Ys .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n <=T Qf n |] ==> !nat :N1.0 .. Pf <=T !nat :N2.0 .. Qf
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> !<f> :X .. Pf <=T !<f> :Y .. Qf
[| b1.0 = b2.0; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> IF b1.0 THEN P1.0 ELSE P2.0 <=T IF b2.0 THEN Q1.0 ELSE Q2.0
lemmas cspT_free_cong:
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 [+] P2.0 =T Q1.0 [+] Q2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |~| P2.0 =T Q1.0 |~| Q2.0
[| X = Y; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |[X]| P2.0 =T Q1.0 |[Y]| Q2.0
[| X = Y; P =T Q |] ==> P -- X =T Q -- Y
[| r1.0 = r2.0; P =T Q |] ==> P [[r1.0]] =T Q [[r2.0]]
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 ;; P2.0 =T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =T Q |] ==> P |. n1.0 =T Q |. n2.0
lemmas cspT_free_cong:
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 [+] P2.0 =T Q1.0 [+] Q2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |~| P2.0 =T Q1.0 |~| Q2.0
[| X = Y; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |[X]| P2.0 =T Q1.0 |[Y]| Q2.0
[| X = Y; P =T Q |] ==> P -- X =T Q -- Y
[| r1.0 = r2.0; P =T Q |] ==> P [[r1.0]] =T Q [[r2.0]]
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 ;; P2.0 =T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =T Q |] ==> P |. n1.0 =T Q |. n2.0
lemmas cspT_cong:
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 [+] P2.0 =T Q1.0 [+] Q2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |~| P2.0 =T Q1.0 |~| Q2.0
[| X = Y; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |[X]| P2.0 =T Q1.0 |[Y]| Q2.0
[| X = Y; P =T Q |] ==> P -- X =T Q -- Y
[| r1.0 = r2.0; P =T Q |] ==> P [[r1.0]] =T Q [[r2.0]]
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 ;; P2.0 =T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =T Q |] ==> P |. n1.0 =T Q |. n2.0
[| a = b; P =T Q |] ==> a -> P =T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ? :X -> Pf =T ? :Y -> Qf
[| C1.0 = C2.0; !!c. c ∈ C2.0 ==> Pf c =T Qf c |] ==> !! :C1.0 .. Pf =T !! :C2.0 .. Qf
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ! :X .. Pf =T ! :Y .. Qf
[| Xs = Ys; !!X. X ∈ Ys ==> Pf X =T Qf X |] ==> !set :Xs .. Pf =T !set :Ys .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n =T Qf n |] ==> !nat :N1.0 .. Pf =T !nat :N2.0 .. Qf
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> !<f> :X .. Pf =T !<f> :Y .. Qf
[| b1.0 = b2.0; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> IF b1.0 THEN P1.0 ELSE P2.0 =T IF b2.0 THEN Q1.0 ELSE Q2.0
lemmas cspT_cong:
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 [+] P2.0 =T Q1.0 [+] Q2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |~| P2.0 =T Q1.0 |~| Q2.0
[| X = Y; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |[X]| P2.0 =T Q1.0 |[Y]| Q2.0
[| X = Y; P =T Q |] ==> P -- X =T Q -- Y
[| r1.0 = r2.0; P =T Q |] ==> P [[r1.0]] =T Q [[r2.0]]
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 ;; P2.0 =T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =T Q |] ==> P |. n1.0 =T Q |. n2.0
[| a = b; P =T Q |] ==> a -> P =T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ? :X -> Pf =T ? :Y -> Qf
[| C1.0 = C2.0; !!c. c ∈ C2.0 ==> Pf c =T Qf c |] ==> !! :C1.0 .. Pf =T !! :C2.0 .. Qf
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ! :X .. Pf =T ! :Y .. Qf
[| Xs = Ys; !!X. X ∈ Ys ==> Pf X =T Qf X |] ==> !set :Xs .. Pf =T !set :Ys .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n =T Qf n |] ==> !nat :N1.0 .. Pf =T !nat :N2.0 .. Qf
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> !<f> :X .. Pf =T !<f> :Y .. Qf
[| b1.0 = b2.0; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> IF b1.0 THEN P1.0 ELSE P2.0 =T IF b2.0 THEN Q1.0 ELSE Q2.0
lemmas cspT_free_decompo:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 [+] P2.0 <=T Q1.0 [+] Q2.0
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |~| P2.0 <=T Q1.0 |~| Q2.0
[| X = Y; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |[X]| P2.0 <=T Q1.0 |[Y]| Q2.0
[| X = Y; P <=T Q |] ==> P -- X <=T Q -- Y
[| r1.0 = r2.0; P <=T Q |] ==> P [[r1.0]] <=T Q [[r2.0]]
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 ;; P2.0 <=T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=T Q |] ==> P |. n1.0 <=T Q |. n2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 [+] P2.0 =T Q1.0 [+] Q2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |~| P2.0 =T Q1.0 |~| Q2.0
[| X = Y; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |[X]| P2.0 =T Q1.0 |[Y]| Q2.0
[| X = Y; P =T Q |] ==> P -- X =T Q -- Y
[| r1.0 = r2.0; P =T Q |] ==> P [[r1.0]] =T Q [[r2.0]]
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 ;; P2.0 =T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =T Q |] ==> P |. n1.0 =T Q |. n2.0
lemmas cspT_free_decompo:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 [+] P2.0 <=T Q1.0 [+] Q2.0
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |~| P2.0 <=T Q1.0 |~| Q2.0
[| X = Y; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |[X]| P2.0 <=T Q1.0 |[Y]| Q2.0
[| X = Y; P <=T Q |] ==> P -- X <=T Q -- Y
[| r1.0 = r2.0; P <=T Q |] ==> P [[r1.0]] <=T Q [[r2.0]]
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 ;; P2.0 <=T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=T Q |] ==> P |. n1.0 <=T Q |. n2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 [+] P2.0 =T Q1.0 [+] Q2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |~| P2.0 =T Q1.0 |~| Q2.0
[| X = Y; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |[X]| P2.0 =T Q1.0 |[Y]| Q2.0
[| X = Y; P =T Q |] ==> P -- X =T Q -- Y
[| r1.0 = r2.0; P =T Q |] ==> P [[r1.0]] =T Q [[r2.0]]
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 ;; P2.0 =T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =T Q |] ==> P |. n1.0 =T Q |. n2.0
lemmas cspT_decompo:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 [+] P2.0 <=T Q1.0 [+] Q2.0
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |~| P2.0 <=T Q1.0 |~| Q2.0
[| X = Y; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |[X]| P2.0 <=T Q1.0 |[Y]| Q2.0
[| X = Y; P <=T Q |] ==> P -- X <=T Q -- Y
[| r1.0 = r2.0; P <=T Q |] ==> P [[r1.0]] <=T Q [[r2.0]]
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 ;; P2.0 <=T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=T Q |] ==> P |. n1.0 <=T Q |. n2.0
[| a = b; P <=T Q |] ==> a -> P <=T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ? :X -> Pf <=T ? :Y -> Qf
[| C1.0 = C2.0; !!c. c ∈ C2.0 ==> Pf c <=T Qf c |] ==> !! :C1.0 .. Pf <=T !! :C2.0 .. Qf
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ! :X .. Pf <=T ! :Y .. Qf
[| Xs = Ys; !!X. X ∈ Ys ==> Pf X <=T Qf X |] ==> !set :Xs .. Pf <=T !set :Ys .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n <=T Qf n |] ==> !nat :N1.0 .. Pf <=T !nat :N2.0 .. Qf
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> !<f> :X .. Pf <=T !<f> :Y .. Qf
[| b1.0 = b2.0; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> IF b1.0 THEN P1.0 ELSE P2.0 <=T IF b2.0 THEN Q1.0 ELSE Q2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 [+] P2.0 =T Q1.0 [+] Q2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |~| P2.0 =T Q1.0 |~| Q2.0
[| X = Y; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |[X]| P2.0 =T Q1.0 |[Y]| Q2.0
[| X = Y; P =T Q |] ==> P -- X =T Q -- Y
[| r1.0 = r2.0; P =T Q |] ==> P [[r1.0]] =T Q [[r2.0]]
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 ;; P2.0 =T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =T Q |] ==> P |. n1.0 =T Q |. n2.0
[| a = b; P =T Q |] ==> a -> P =T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ? :X -> Pf =T ? :Y -> Qf
[| C1.0 = C2.0; !!c. c ∈ C2.0 ==> Pf c =T Qf c |] ==> !! :C1.0 .. Pf =T !! :C2.0 .. Qf
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ! :X .. Pf =T ! :Y .. Qf
[| Xs = Ys; !!X. X ∈ Ys ==> Pf X =T Qf X |] ==> !set :Xs .. Pf =T !set :Ys .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n =T Qf n |] ==> !nat :N1.0 .. Pf =T !nat :N2.0 .. Qf
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> !<f> :X .. Pf =T !<f> :Y .. Qf
[| b1.0 = b2.0; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> IF b1.0 THEN P1.0 ELSE P2.0 =T IF b2.0 THEN Q1.0 ELSE Q2.0
lemmas cspT_decompo:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 [+] P2.0 <=T Q1.0 [+] Q2.0
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |~| P2.0 <=T Q1.0 |~| Q2.0
[| X = Y; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |[X]| P2.0 <=T Q1.0 |[Y]| Q2.0
[| X = Y; P <=T Q |] ==> P -- X <=T Q -- Y
[| r1.0 = r2.0; P <=T Q |] ==> P [[r1.0]] <=T Q [[r2.0]]
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 ;; P2.0 <=T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=T Q |] ==> P |. n1.0 <=T Q |. n2.0
[| a = b; P <=T Q |] ==> a -> P <=T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ? :X -> Pf <=T ? :Y -> Qf
[| C1.0 = C2.0; !!c. c ∈ C2.0 ==> Pf c <=T Qf c |] ==> !! :C1.0 .. Pf <=T !! :C2.0 .. Qf
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ! :X .. Pf <=T ! :Y .. Qf
[| Xs = Ys; !!X. X ∈ Ys ==> Pf X <=T Qf X |] ==> !set :Xs .. Pf <=T !set :Ys .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n <=T Qf n |] ==> !nat :N1.0 .. Pf <=T !nat :N2.0 .. Qf
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> !<f> :X .. Pf <=T !<f> :Y .. Qf
[| b1.0 = b2.0; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> IF b1.0 THEN P1.0 ELSE P2.0 <=T IF b2.0 THEN Q1.0 ELSE Q2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 [+] P2.0 =T Q1.0 [+] Q2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |~| P2.0 =T Q1.0 |~| Q2.0
[| X = Y; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |[X]| P2.0 =T Q1.0 |[Y]| Q2.0
[| X = Y; P =T Q |] ==> P -- X =T Q -- Y
[| r1.0 = r2.0; P =T Q |] ==> P [[r1.0]] =T Q [[r2.0]]
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 ;; P2.0 =T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =T Q |] ==> P |. n1.0 =T Q |. n2.0
[| a = b; P =T Q |] ==> a -> P =T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ? :X -> Pf =T ? :Y -> Qf
[| C1.0 = C2.0; !!c. c ∈ C2.0 ==> Pf c =T Qf c |] ==> !! :C1.0 .. Pf =T !! :C2.0 .. Qf
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ! :X .. Pf =T ! :Y .. Qf
[| Xs = Ys; !!X. X ∈ Ys ==> Pf X =T Qf X |] ==> !set :Xs .. Pf =T !set :Ys .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n =T Qf n |] ==> !nat :N1.0 .. Pf =T !nat :N2.0 .. Qf
[| inj f; X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> !<f> :X .. Pf =T !<f> :Y .. Qf
[| b1.0 = b2.0; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> IF b1.0 THEN P1.0 ELSE P2.0 =T IF b2.0 THEN Q1.0 ELSE Q2.0
lemmas cspT_rm_head_mono:
[| a = b; P <=T Q |] ==> a -> P <=T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ? :X -> Pf <=T ? :Y -> Qf
lemmas cspT_rm_head_mono:
[| a = b; P <=T Q |] ==> a -> P <=T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ? :X -> Pf <=T ? :Y -> Qf
lemmas cspT_rm_head_cong:
[| a = b; P =T Q |] ==> a -> P =T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ? :X -> Pf =T ? :Y -> Qf
lemmas cspT_rm_head_cong:
[| a = b; P =T Q |] ==> a -> P =T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ? :X -> Pf =T ? :Y -> Qf
lemmas cspT_rm_head:
[| a = b; P <=T Q |] ==> a -> P <=T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ? :X -> Pf <=T ? :Y -> Qf
[| a = b; P =T Q |] ==> a -> P =T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ? :X -> Pf =T ? :Y -> Qf
lemmas cspT_rm_head:
[| a = b; P <=T Q |] ==> a -> P <=T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a <=T Qf a |] ==> ? :X -> Pf <=T ? :Y -> Qf
[| a = b; P =T Q |] ==> a -> P =T b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a =T Qf a |] ==> ? :X -> Pf =T ? :Y -> Qf
lemma cspT_Rep_int_choice_decompo_ALL_EX_ref:
∀c2∈C2.0. ∃c1∈C1.0. Pf c1 <=T Qf c2 ==> !! :C1.0 .. Pf <=T !! :C2.0 .. Qf
lemma cspT_Rep_int_choice_decompo_ALL_EX_eq:
[| ∀c1∈C1.0. ∃c2∈C2.0. Pf c1 =T Qf c2; ∀c2∈C2.0. ∃c1∈C1.0. Pf c1 =T Qf c2 |] ==> !! :C1.0 .. Pf =T !! :C2.0 .. Qf
lemmas cspT_Rep_int_choice_decompo_ALL_EX:
∀c2∈C2.0. ∃c1∈C1.0. Pf c1 <=T Qf c2 ==> !! :C1.0 .. Pf <=T !! :C2.0 .. Qf
[| ∀c1∈C1.0. ∃c2∈C2.0. Pf c1 =T Qf c2; ∀c2∈C2.0. ∃c1∈C1.0. Pf c1 =T Qf c2 |] ==> !! :C1.0 .. Pf =T !! :C2.0 .. Qf
lemmas cspT_Rep_int_choice_decompo_ALL_EX:
∀c2∈C2.0. ∃c1∈C1.0. Pf c1 <=T Qf c2 ==> !! :C1.0 .. Pf <=T !! :C2.0 .. Qf
[| ∀c1∈C1.0. ∃c2∈C2.0. Pf c1 =T Qf c2; ∀c2∈C2.0. ∃c1∈C1.0. Pf c1 =T Qf c2 |] ==> !! :C1.0 .. Pf =T !! :C2.0 .. Qf