Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law_norm(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | April 2006 | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_T_law_norm = CSP_T_law_basic: (********************************************************* ?-div *********************************************************) lemma cspT_input_DIV: "? :A -> Pf =T (? :A -> Pf [+] DIV) |~| ? a:A -> DIV" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule) apply (simp add: in_traces) (* <= *) apply (rule) apply (simp add: in_traces) apply (elim disjE conjE exE) apply (simp_all) done (********************************************************* !!-!set-div *********************************************************) lemma cspT_Rep_int_choice_set_DIV: "!! c:C .. (!set X:(Xsf c) .. (? a:X -> DIV)) =T !set X:(Union {Xsf c |c. c : C}) .. (? a:X -> DIV)" apply (simp add: cspT_semantics) apply (rule order_antisym) (* <= *) apply (rule) apply (simp add: in_traces) apply (elim conjE exE bexE disjE) apply (simp_all) apply (rule_tac x="Xsf c" in exI) apply (force) (* => *) apply (rule) apply (simp add: in_traces) apply (elim conjE exE bexE disjE) apply (simp_all) apply (rule_tac x="c" in bexI) apply (force) apply (simp) done (********************************************************* ?-!set-<= *********************************************************) lemma cspT_input_Rep_int_choice_set_subset: "[| Xs <= Ys ; ALL Y:Ys. EX X:Xs. X <= Y & Y <= A |] ==> ((? :A -> Pf) [+] Q) |~| (!set X : Xs .. ? a:X -> DIV) =T ((? :A -> Pf) [+] Q) |~| (!set Y : Ys .. ? a:Y -> DIV)" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule, simp add: in_traces) apply (elim disjE conjE exE bexE) apply (simp_all) apply (drule_tac x="a" in bspec) apply (force) apply (force) (* <= *) apply (rule, simp add: in_traces) apply (elim disjE conjE exE bexE) apply (simp_all) apply (drule_tac x="a" in bspec, simp) apply (force) done lemmas cspT_norm = cspT_input_DIV cspT_Rep_int_choice_set_DIV cspT_input_Rep_int_choice_set_subset end
lemma cspT_input_DIV:
? :A -> Pf =T ? :A -> Pf [+] DIV |~| ? a:A -> DIV
lemma cspT_Rep_int_choice_set_DIV:
!! c:C .. !set X:Xsf c .. ? a:X -> DIV =T !set X:Union {Xsf c |c. c ∈ C} .. ? a:X -> DIV
lemma cspT_input_Rep_int_choice_set_subset:
[| Xs ⊆ Ys; ∀Y∈Ys. ∃X∈Xs. X ⊆ Y ∧ Y ⊆ A |] ==> ? :A -> Pf [+] Q |~| !set X:Xs .. ? a:X -> DIV =T ? :A -> Pf [+] Q |~| !set Y:Ys .. ? a:Y -> DIV
lemmas cspT_norm:
? :A -> Pf =T ? :A -> Pf [+] DIV |~| ? a:A -> DIV
!! c:C .. !set X:Xsf c .. ? a:X -> DIV =T !set X:Union {Xsf c |c. c ∈ C} .. ? a:X -> DIV
[| Xs ⊆ Ys; ∀Y∈Ys. ∃X∈Xs. X ⊆ Y ∧ Y ⊆ A |] ==> ? :A -> Pf [+] Q |~| !set X:Xs .. ? a:X -> DIV =T ? :A -> Pf [+] Q |~| !set Y:Ys .. ? a:Y -> DIV
lemmas cspT_norm:
? :A -> Pf =T ? :A -> Pf [+] DIV |~| ? a:A -> DIV
!! c:C .. !set X:Xsf c .. ? a:X -> DIV =T !set X:Union {Xsf c |c. c ∈ C} .. ? a:X -> DIV
[| Xs ⊆ Ys; ∀Y∈Ys. ∃X∈Xs. X ⊆ Y ∧ Y ⊆ A |] ==> ? :A -> Pf [+] Q |~| !set X:Xs .. ? a:X -> DIV =T ? :A -> Pf [+] Q |~| !set Y:Ys .. ? a:Y -> DIV