Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law_step_ext (*-------------------------------------------*
| CSP-Prover on Isabelle2005 |
| December 2005 (modified) |
| April 2006 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_T_law_step_ext = CSP_T_law_basic:
(*****************************************************************
1. step laws
2.
3.
4.
*****************************************************************)
(*********************************************************
Parallel expansion & distribution
*********************************************************)
lemma cspT_Parallel_Timeout_split:
"((? :Y -> Pf) [> P) |[X]| ((? :Z -> Qf) [> Q) =T
(? x:((X Int Y Int Z) Un (Y - X) Un (Z - X))
-> IF (x : X) THEN (Pf x |[X]| Qf x)
ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [> Q))
|~| (((? x:Y -> Pf x) [> P) |[X]| Qf x))
ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [> Q))
ELSE (((? x:Y -> Pf x) [> P) |[X]| Qf x))
[> (((P |[X]| ((? :Z -> Qf) [> Q)) |~|
(((? :Y -> Pf) [> P) |[X]| Q)))"
apply (fold Timeout_def)
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule)
apply (simp add: in_traces_Timeout in_traces)
apply (elim conjE exE disjE)
apply (simp_all)
apply (force)
apply (force)
apply (force)
apply (force)
apply (simp add: par_tr_head_Ev_Ev)
apply (elim conjE exE disjE)
apply (simp)
apply (rule disjI1)
apply (rule_tac x="c" in exI)
apply (rule_tac x="v" in exI)
apply (force)
apply (simp)
apply (rule disjI1)
apply (rule_tac x="c" in exI)
apply (rule_tac x="v" in exI)
apply (force)
apply (simp)
apply (rule disjI1)
apply (rule_tac x="c" in exI)
apply (rule_tac x="v" in exI)
apply (force)
apply (force)
apply (force)
apply (force)
(* <= *)
apply (rule)
apply (simp add: in_traces_Timeout in_traces)
apply (elim conjE exE disjE)
apply (simp_all)
apply (simp add: in_traces)
apply (elim conjE exE)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
apply (simp add: in_traces_IF)
apply (case_tac "a : Z")
(* a : Z *)
apply (simp add: in_traces_Timeout in_traces)
apply (elim conjE exE disjE)
apply (simp_all)
apply (simp add: par_tr_nil_right)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="<>" in exI)
apply (simp add: par_tr_nil_right)
apply (force)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="ta" in exI)
apply (simp add: par_tr_head)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="ta" in exI)
apply (simp add: par_tr_head)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
(* a ~: Z *)
apply (simp add: in_traces_Timeout in_traces)
apply (elim conjE exE disjE)
apply (simp add: par_tr_nil_right)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="<>" in exI)
apply (simp add: par_tr_nil_right)
apply (force)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="ta" in exI)
apply (simp add: par_tr_head)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="ta" in exI)
apply (simp add: par_tr_head)
apply (simp add: in_traces_IF)
apply (case_tac "a : Y")
(* a : Y *)
apply (simp add: in_traces_Timeout in_traces)
apply (elim conjE exE disjE)
apply (simp_all)
apply (simp add: par_tr_nil_right)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="<>" in exI)
apply (simp add: par_tr_nil_right)
apply (force)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="ta" in exI)
apply (simp add: par_tr_head)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="ta" in exI)
apply (simp add: par_tr_head)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
(* a ~:Y *)
apply (simp add: in_traces_Timeout in_traces)
apply (elim conjE exE disjE)
apply (simp add: par_tr_nil_left)
apply (rule_tac x="<>" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_nil_left)
apply (force)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
(* *)
apply (force)
apply (force)
apply (force)
apply (force)
apply (force)
apply (force)
done
(*********************************************************
Parallel expansion & distribution 2
*********************************************************)
lemma cspT_Parallel_Timeout_input_l:
"((? :Y -> Pf) [> P) |[X]| (? :Z -> Qf) =T
(? x:((X Int Y Int Z) Un (Y - X) Un (Z - X))
-> IF (x : X) THEN (Pf x |[X]| Qf x)
ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| (? x:Z -> Qf x))
|~| (((? x:Y -> Pf x) [> P) |[X]| Qf x))
ELSE IF (x : Y) THEN (Pf x |[X]| (? x:Z -> Qf x))
ELSE (((? x:Y -> Pf x) [> P) |[X]| Qf x))
[> (((P |[X]| (? :Z -> Qf))))"
apply (fold Timeout_def)
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule)
apply (simp add: in_traces_Timeout in_traces)
apply (elim conjE exE disjE)
apply (simp_all)
apply (simp add: par_tr_nil_left)
apply (rule disjI1)
apply (rule_tac x="a" in exI)
apply (rule_tac x="sa" in exI)
apply (elim conjE)
apply (simp add: image_iff)
apply (case_tac "a:Y")
apply (simp)
apply (rule disjI2)
apply (rule_tac x="<>" in exI)
apply (rule_tac x="sa" in exI)
apply (simp add: par_tr_nil_left)
apply (simp)
apply (rule_tac x="<>" in exI)
apply (rule_tac x="sa" in exI)
apply (simp add: par_tr_nil_left)
apply (simp add: par_tr_nil_right)
apply (rule disjI1)
apply (rule_tac x="a" in exI)
apply (rule_tac x="sa" in exI)
apply (elim conjE)
apply (simp add: image_iff)
apply (case_tac "a:Z")
apply (simp)
apply (rule disjI1)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="<>" in exI)
apply (simp add: par_tr_nil_right)
apply (simp)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="<>" in exI)
apply (simp add: par_tr_nil_right)
apply (force)
apply (simp add: par_tr_head_Ev_Ev)
apply (elim conjE exE disjE)
apply (simp)
apply (rule disjI1)
apply (rule_tac x="c" in exI)
apply (rule_tac x="v" in exI)
apply (force)
apply (simp)
apply (rule disjI1)
apply (rule_tac x="c" in exI)
apply (rule_tac x="v" in exI)
apply (force)
apply (simp)
apply (rule disjI1)
apply (rule_tac x="c" in exI)
apply (rule_tac x="v" in exI)
apply (force)
apply (force)
(* <= *)
apply (rule)
apply (simp add: in_traces_Timeout in_traces)
apply (elim conjE exE disjE)
apply (simp_all)
apply (simp add: in_traces)
apply (elim conjE exE)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
apply (simp add: in_traces_IF)
apply (case_tac "a : Z")
(* a : Z *)
apply (simp add: in_traces_Timeout in_traces)
apply (elim conjE exE disjE)
apply (simp_all)
apply (simp add: par_tr_nil_right)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="<>" in exI)
apply (simp add: par_tr_nil_right)
apply (force)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="ta" in exI)
apply (simp add: par_tr_head)
apply (rule_tac x="<>" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
apply (rule_tac x="<Ev aa> ^^ sb" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
(* a ~: Z *)
apply (simp add: in_traces_Timeout in_traces)
apply (elim conjE exE disjE)
apply (simp add: par_tr_nil_right)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="<>" in exI)
apply (simp add: par_tr_nil_right)
apply (force)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="ta" in exI)
apply (simp add: par_tr_head)
apply (simp add: in_traces_IF)
apply (case_tac "a : Y")
(* a : Y *)
apply (simp add: in_traces_Timeout in_traces)
apply (elim conjE exE disjE)
apply (simp_all)
apply (simp add: par_tr_nil_right)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="<>" in exI)
apply (simp add: par_tr_nil_right)
apply (force)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (rule_tac x="ta" in exI)
apply (simp add: par_tr_head)
apply (simp add: par_tr_nil_left)
apply (rule_tac x="<>" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_nil_left)
apply (force)
apply (rule_tac x="<Ev aa> ^^ sb" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
(* a ~:Y *)
apply (simp add: in_traces_Timeout in_traces)
apply (elim conjE exE disjE)
apply (simp add: par_tr_nil_left)
apply (rule_tac x="<>" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_nil_left)
apply (force)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="<Ev a> ^^ ta" in exI)
apply (simp add: par_tr_head)
(* *)
apply (force)
apply (force)
done
lemma cspT_Parallel_Timeout_input_r:
"(? :Y -> Pf) |[X]| ((? :Z -> Qf) [> Q) =T
(? x:((X Int Y Int Z) Un (Y - X) Un (Z - X))
-> IF (x : X) THEN (Pf x |[X]| Qf x)
ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [> Q))
|~| ((? x:Y -> Pf x) |[X]| Qf x))
ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [> Q))
ELSE ((? x:Y -> Pf x) |[X]| Qf x))
[> ((((? :Y -> Pf) |[X]| Q)))"
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (rule cspT_rw_left)
apply (rule cspT_Parallel_Timeout_input_l)
apply (rule cspT_decompo)
apply (rule cspT_decompo)
apply (rule cspT_decompo)
apply (force)
apply (case_tac "a : X")
apply (simp)
apply (rule cspT_rw_left)
apply (rule cspT_IF)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_commut)
apply (simp)
apply (rule cspT_rw_left)
apply (rule cspT_IF)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (case_tac "(a : Z & a : Y)")
apply (simp)
apply (rule cspT_rw_left)
apply (rule cspT_IF)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (rule cspT_decompo)
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (simp)
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (simp)
apply (simp (no_asm_simp))
apply (rule cspT_rw_left)
apply (rule cspT_IF)
apply (subgoal_tac "~(a : Y & a : Z)")
apply (simp (no_asm_simp))
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (case_tac "a : Z")
apply (simp)
apply (rule cspT_rw_left)
apply (rule cspT_IF)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_commut)
apply (simp)
apply (rule cspT_rw_left)
apply (rule cspT_IF)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_commut)
apply (fast)
apply (simp)
apply (rule cspT_commut)
done
lemmas cspT_Parallel_Timeout_input =
cspT_Parallel_Timeout_input_l
cspT_Parallel_Timeout_input_r
(*** cspT_step_ext ***)
lemmas cspT_step_ext = cspT_Parallel_Timeout_split
cspT_Parallel_Timeout_input
end
lemma cspT_Parallel_Timeout_split:
(? :Y -> Pf [> P) |[X]| (? :Z -> Qf [> Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [> Q) |~| (? :Y -> Pf [> P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [> Q) ELSE (? :Y -> Pf [> P) |[X]| Qf x [> (P |[X]| (? :Z -> Qf [> Q) |~| (? :Y -> Pf [> P) |[X]| Q)
lemma cspT_Parallel_Timeout_input_l:
(? :Y -> Pf [> P) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [> P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [> P) |[X]| Qf x [> P |[X]| ? :Z -> Qf
lemma cspT_Parallel_Timeout_input_r:
? :Y -> Pf |[X]| (? :Z -> Qf [> Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [> Q) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [> Q) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| Q
lemmas cspT_Parallel_Timeout_input:
(? :Y -> Pf [> P) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [> P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [> P) |[X]| Qf x [> P |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [> Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [> Q) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [> Q) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| Q
lemmas cspT_Parallel_Timeout_input:
(? :Y -> Pf [> P) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [> P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [> P) |[X]| Qf x [> P |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [> Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [> Q) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [> Q) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| Q
lemmas cspT_step_ext:
(? :Y -> Pf [> P) |[X]| (? :Z -> Qf [> Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [> Q) |~| (? :Y -> Pf [> P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [> Q) ELSE (? :Y -> Pf [> P) |[X]| Qf x [> (P |[X]| (? :Z -> Qf [> Q) |~| (? :Y -> Pf [> P) |[X]| Q)
(? :Y -> Pf [> P) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [> P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [> P) |[X]| Qf x [> P |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [> Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [> Q) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [> Q) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| Q
lemmas cspT_step_ext:
(? :Y -> Pf [> P) |[X]| (? :Z -> Qf [> Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [> Q) |~| (? :Y -> Pf [> P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [> Q) ELSE (? :Y -> Pf [> P) |[X]| Qf x [> (P |[X]| (? :Z -> Qf [> Q) |~| (? :Y -> Pf [> P) |[X]| Q)
(? :Y -> Pf [> P) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [> P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [> P) |[X]| Qf x [> P |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [> Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [> Q) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [> Q) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| Q