Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law_dist (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| December 2004 |
| July 2005 (modified) |
| September 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| October 2005 (modified) |
| April 2006 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_T_law_dist = CSP_T_law_basic:
(*****************************************************************
distribution over internal choice
1. (P1 |~| P2) [+] Q
2. Q [+] (P1 |~| P2)
3. (P1 |~| P2) |[X]| Q
4. Q |[X]| (P1 |~| P2)
5. (P1 |~| P2) -- X
6. (P1 |~| P2) [[r]]
7. (P1 |~| P2) ;; Q
8. (P1 |~| P2) |. n
9. !! x:X .. (P1 |~| P2)
*****************************************************************)
(*********************************************************
dist law for Ext_choice (l)
*********************************************************)
lemma cspT_Ext_choice_dist_l:
"(P1 |~| P2) [+] Q =T
(P1 [+] Q) |~| (P2 [+] Q)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done
(*********************************************************
dist law for Ext_choice (r)
*********************************************************)
lemma cspT_Ext_choice_dist_r:
"P [+] (Q1 |~| Q2) =T
(P [+] Q1) |~| (P [+] Q2)"
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (rule cspT_rw_left)
apply (rule cspT_Ext_choice_dist_l)
apply (rule cspT_decompo)
apply (rule cspT_commut)+
done
(*********************************************************
dist law for Parallel (l)
*********************************************************)
lemma cspT_Parallel_dist_l:
"(P1 |~| P2) |[X]| Q =T
(P1 |[X]| Q) |~| (P2 |[X]| Q)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done
(*********************************************************
dist law for Parallel (r)
*********************************************************)
lemma cspT_Parallel_dist_r:
"P |[X]| (Q1 |~| Q2) =T
(P |[X]| Q1) |~| (P |[X]| Q2)"
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (rule cspT_rw_left)
apply (rule cspT_Parallel_dist_l)
apply (rule cspT_decompo)
apply (rule cspT_commut)+
done
(*********************************************************
dist law for Hiding
*********************************************************)
lemma cspT_Hiding_dist:
"(P1 |~| P2) -- X =T
(P1 -- X) |~| (P2 -- X)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done
(*********************************************************
dist law for Renaming
*********************************************************)
lemma cspT_Renaming_dist:
"(P1 |~| P2) [[r]] =T
(P1 [[r]]) |~| (P2 [[r]])"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done
(*********************************************************
dist law for Sequential composition
*********************************************************)
lemma cspT_Seq_compo_dist:
"(P1 |~| P2) ;; Q =T
(P1 ;; Q) |~| (P2 ;; Q)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done
(*********************************************************
dist law for Depth_rest
*********************************************************)
lemma cspT_Depth_rest_dist:
"(P1 |~| P2) |. n =T
(P1 |. n) |~| (P2 |. n)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)
apply (rule, simp add: in_traces)
apply (force)
done
(*********************************************************
dist law for Rep_int_choice
*********************************************************)
lemma cspT_Rep_int_choice_dist:
"!! c:C .. (Pf c |~| Qf c) =T (!! c:C .. Pf c) |~| (!! c:C .. Qf c)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done
(*********************************************************
dist laws
*********************************************************)
lemmas cspT_dist = cspT_Ext_choice_dist_l cspT_Ext_choice_dist_r
cspT_Parallel_dist_l cspT_Parallel_dist_r
cspT_Hiding_dist cspT_Renaming_dist
cspT_Seq_compo_dist cspT_Depth_rest_dist
cspT_Rep_int_choice_dist
(*****************************************************************
distribution over replicated internal choice
1. (!! :C .. Pf) [+] Q
2. Q [+] (!! :C .. Pf)
3. (!! :C .. Pf) |[X]| Q
4. Q |[X]| (!! :C .. Pf)
5. (!! :C .. Pf) -- X
6. (!! :C .. Pf) [[r]]
7. (!! :C .. Pf) |. n
*****************************************************************)
(*********************************************************
Rep_dist law for Ext_choice (l)
*********************************************************)
lemma cspT_Ext_choice_Dist0_l_nonempty:
"C ~= {} ==> (!! :C .. Pf) [+] Q =T
!! c:C .. (Pf c [+] Q)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done
(*** Dist ***)
lemma cspT_Ext_choice_Dist0_l:
"(!! :C .. Pf) [+] Q =T
IF (C={}) THEN (DIV [+] Q) ELSE (!! c:C .. (Pf c [+] Q))"
apply (case_tac "C={}")
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_decompo)
apply (simp add: cspT_Rep_int_choice_empty)
apply (simp)
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_Ext_choice_Dist0_l_nonempty)
apply (simp)
done
(*********************************************************
Dist0 law for Ext_choice (r)
*********************************************************)
lemma cspT_Ext_choice_Dist0_r_nonempty:
"C ~= {} ==> P [+] (!! :C .. Qf) =T
!! c:C .. (P [+] Qf c)"
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (rule cspT_rw_left)
apply (rule cspT_Ext_choice_Dist0_l_nonempty, simp)
apply (rule cspT_decompo, simp)
apply (rule cspT_commut)
done
(*** Dist ***)
lemma cspT_Ext_choice_Dist0_r:
"P [+] (!! :C .. Qf) =T
IF (C={}) THEN (P [+] DIV) ELSE (!! c:C .. (P [+] Qf c))"
apply (case_tac "C={}")
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_decompo)
apply (simp)
apply (simp add: cspT_Rep_int_choice_empty)
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_Ext_choice_Dist0_r_nonempty)
apply (simp)
done
(*********************************************************
Dist0 law for Parallel (l)
*********************************************************)
lemma cspT_Parallel_Dist0_l_nonempty:
"C ~= {} ==>
(!! :C .. Pf) |[X]| Q =T
!! c:C .. (Pf c |[X]| Q)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)
apply (elim disjE conjE exE bexE)
apply (subgoal_tac "EX c. c:C")
apply (elim exE)
apply (rule disjI2)
apply (rule_tac x="c" in bexI)
apply (simp)
apply (rule_tac x="<>" in exI)
apply (rule_tac x="ta" in exI)
apply (simp)
apply (simp)
apply (fast)
(* *)
apply (rule disjI2)
apply (rule_tac x="c" in bexI)
apply (fast)
apply (simp)
apply (rule, simp add: in_traces)
apply (elim disjE conjE exE bexE)
apply (rule_tac x="<>" in exI)
apply (rule_tac x="<>" in exI)
apply (simp)
apply (fast)
done
(*** Dist ***)
lemma cspT_Parallel_Dist0_l:
"(!! :C .. Pf) |[X]| Q =T
IF (C={}) THEN (DIV |[X]| Q) ELSE (!! c:C .. (Pf c |[X]| Q))"
apply (case_tac "C={}")
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_decompo)
apply (simp)
apply (simp add: cspT_Rep_int_choice_empty)
apply (simp)
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_Parallel_Dist0_l_nonempty)
apply (simp)
done
(*********************************************************
Dist0 law for Parallel (r)
*********************************************************)
lemma cspT_Parallel_Dist0_r_nonempty:
"C ~= {} ==>
P |[X]| (!! :C .. Qf) =T
!! c:C .. (P |[X]| Qf c)"
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (rule cspT_rw_left)
apply (rule cspT_Parallel_Dist0_l_nonempty, simp)
apply (rule cspT_decompo, simp)
apply (rule cspT_commut)
done
(*** Dist ***)
lemma cspT_Parallel_Dist0_r:
"P |[X]| (!! :C .. Qf) =T
IF (C={}) THEN (P |[X]| DIV) ELSE (!! c:C .. (P |[X]| Qf c))"
apply (case_tac "C={}")
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_decompo)
apply (simp)
apply (simp)
apply (simp add: cspT_Rep_int_choice_empty)
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_Parallel_Dist0_r_nonempty)
apply (simp)
done
(*********************************************************
Dist0 law for Hiding
*********************************************************)
lemma cspT_Hiding_Dist0:
"(!! :C .. Pf) -- X =T
!! c:C .. (Pf c -- X)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)
apply (elim disjE conjE exE, simp, fast)
apply (rule, simp add: in_traces)
apply (elim disjE conjE exE bexE)
apply (rule_tac x="<>" in exI, simp)
apply (rule_tac x="s" in exI, fast)
done
(*********************************************************
Dist0 law for Renaming
*********************************************************)
lemma cspT_Renaming_Dist0:
"(!! :C .. Pf) [[r]] =T
!! c:C .. (Pf c [[r]])"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)
apply (elim disjE conjE exE, simp, fast)
apply (rule, simp add: in_traces)
apply (elim disjE conjE exE, simp, fast)
done
(*********************************************************
Dist0 law for Sequential composition
*********************************************************)
lemma cspT_Seq_compo_Dist0:
"(!! :C .. Pf) ;; Q =T
!! c:C .. (Pf c ;; Q)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)
apply (elim disjE conjE exE bexE)
apply (simp)
apply (fast)
apply (force)
apply (rule disjI2)
apply (rule_tac x="c" in bexI)
apply (force)
apply (simp)
apply (rule, simp add: in_traces)
apply (elim disjE conjE exE bexE)
apply (rule disjI1)
apply (rule_tac x="<>" in exI, simp)
apply (fast)
apply (fast)
done
(*********************************************************
Dist0 law for Depth_rest
*********************************************************)
lemma cspT_Depth_rest_Dist0:
"(!! :C .. Pf) |. n =T
!! c:C .. (Pf c |. n)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)
apply (rule, simp add: in_traces)
apply (force)
done
(*********************************************************
Dist0 laws
*********************************************************)
lemmas cspT_Dist0 = cspT_Ext_choice_Dist0_l cspT_Ext_choice_Dist0_r
cspT_Parallel_Dist0_l cspT_Parallel_Dist0_r
cspT_Hiding_Dist0 cspT_Renaming_Dist0
cspT_Seq_compo_Dist0 cspT_Depth_rest_Dist0
lemmas cspT_Dist0_nonempty =
cspT_Ext_choice_Dist0_l_nonempty cspT_Ext_choice_Dist0_r_nonempty
cspT_Parallel_Dist0_l_nonempty cspT_Parallel_Dist0_r_nonempty
cspT_Hiding_Dist0 cspT_Renaming_Dist0
cspT_Seq_compo_Dist0 cspT_Depth_rest_Dist0
(*****************************************************************
for convenience
1. (!!<f> :X .. Pf) [+] Q
2. Q [+] (!!<f> :X .. Pf)
3. (!!<f> :X .. Pf) |[X]| Q
4. Q |[X]| (!!<f> :X .. Pf)
5. (!!<f> :X .. Pf) -- X
6. (!!<f> :X .. Pf) [[r]]
7. (!!<f> :X .. Pf) |. n
*****************************************************************)
(*------------------*
| csp law |
*------------------*)
lemma cspT_Ext_choice_Dist_fun_l_nonempty:
"[| inj f ; X ~= {} |]
==> (!!<f> :X .. Pf) [+] Q =T !!<f> x:X .. (Pf x [+] Q)"
by (simp add: Rep_int_choice_fun_def cspT_Dist0_nonempty)
lemma cspT_Ext_choice_Dist_fun_r_nonempty:
"[| inj f ; X ~= {} |]
==> P [+] (!!<f> :X .. Qf) =T !!<f> x:X .. (P [+] Qf x)"
by (simp add: Rep_int_choice_fun_def cspT_Dist0_nonempty)
lemma cspT_Parallel_Dist_fun_l_nonempty:
"[| inj f ; Y ~= {} |]
==> (!!<f> :Y .. Pf) |[X]| Q =T !!<f> x:Y .. (Pf x |[X]| Q)"
by (simp add: Rep_int_choice_fun_def cspT_Dist0_nonempty)
lemma cspT_Parallel_Dist_fun_r_nonempty:
"[| inj f ; Y ~= {} |]
==> P |[X]| (!!<f> :Y .. Qf) =T !!<f> x:Y .. (P |[X]| Qf x)"
by (simp add: Rep_int_choice_fun_def cspT_Dist0_nonempty)
lemma cspT_Ext_choice_Dist_fun_l:
"(!!<f> :X .. Pf) [+] Q =T
IF (X ={}) THEN (DIV [+] Q) ELSE (!!<f> x:X .. (Pf x [+] Q))"
apply (simp add: Rep_int_choice_fun_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist0)
apply (rule cspT_decompo)
apply (auto)
done
lemma cspT_Ext_choice_Dist_fun_r:
"P [+] (!!<f> :X .. Qf) =T
IF (X ={}) THEN (P [+] DIV) ELSE (!!<f> x:X .. (P [+] Qf x))"
apply (simp add: Rep_int_choice_fun_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist0)
apply (rule cspT_decompo)
apply (auto)
done
lemma cspT_Parallel_Dist_fun_l:
"(!!<f> :Y .. Pf) |[X]| Q =T
IF (Y ={}) THEN (DIV |[X]| Q) ELSE (!!<f> x:Y .. (Pf x |[X]| Q))"
apply (simp add: Rep_int_choice_fun_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist0)
apply (rule cspT_decompo)
apply (auto)
done
lemma cspT_Parallel_Dist_fun_r:
"P |[X]| (!!<f> :Y .. Qf) =T
IF (Y ={}) THEN (P |[X]| DIV) ELSE (!!<f> x:Y .. (P |[X]| Qf x))"
apply (simp add: Rep_int_choice_fun_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist0)
apply (rule cspT_decompo)
apply (auto)
done
lemma cspT_Hiding_Dist_fun:
"(!!<f> :Y .. Pf) -- X =T !!<f> x:Y .. (Pf x -- X)"
by (simp add: Rep_int_choice_fun_def cspT_Dist0)
lemma cspT_Renaming_Dist_fun:
"(!!<f> :X .. Pf) [[r]] =T !!<f> x:X .. (Pf x [[r]])"
by (simp add: Rep_int_choice_fun_def cspT_Dist0)
lemma cspT_Seq_compo_Dist_fun:
"(!!<f> :X .. Pf) ;; Q =T !!<f> x:X .. (Pf x ;; Q)"
by (simp add: Rep_int_choice_fun_def cspT_Dist0)
lemma cspT_Depth_rest_Dist_fun:
"(!!<f> :X .. Pf) |. n =T !!<f> x:X .. (Pf x |. n)"
by (simp add: Rep_int_choice_fun_def cspT_Dist0)
(*********************************************************
Dist laws
*********************************************************)
lemmas cspT_Dist_fun = cspT_Ext_choice_Dist_fun_l cspT_Ext_choice_Dist_fun_r
cspT_Parallel_Dist_fun_l cspT_Parallel_Dist_fun_r
cspT_Hiding_Dist_fun cspT_Renaming_Dist_fun
cspT_Seq_compo_Dist_fun cspT_Depth_rest_Dist_fun
lemmas cspT_Dist_fun_nonempty =
cspT_Ext_choice_Dist_fun_l_nonempty cspT_Ext_choice_Dist_fun_r_nonempty
cspT_Parallel_Dist_fun_l_nonempty cspT_Parallel_Dist_fun_r_nonempty
cspT_Hiding_Dist_fun cspT_Renaming_Dist_fun
cspT_Seq_compo_Dist_fun cspT_Depth_rest_Dist_fun
(*****************************************************************
for convenience
1. (! :X .. Pf) [+] Q
2. Q [+] (! :X .. Pf)
3. (! :X .. Pf) |[X]| Q
4. Q |[X]| (! :X .. Pf)
5. (! :X .. Pf) -- X
6. (! :X .. Pf) [[r]]
7. (! :X .. Pf) |. n
*****************************************************************)
(*------------------*
| csp law |
*------------------*)
lemma cspT_Ext_choice_Dist_com_l_nonempty:
"X ~= {}
==> (! :X .. Pf) [+] Q =T ! x:X .. (Pf x [+] Q)"
by (simp add: Rep_int_choice_com_def cspT_Dist_fun_nonempty)
lemma cspT_Ext_choice_Dist_com_r_nonempty:
"X ~= {}
==> P [+] (! :X .. Qf) =T ! x:X .. (P [+] Qf x)"
by (simp add: Rep_int_choice_com_def cspT_Dist_fun_nonempty)
lemma cspT_Parallel_Dist_com_l_nonempty:
"Y ~= {}
==> (! :Y .. Pf) |[X]| Q =T ! x:Y .. (Pf x |[X]| Q)"
by (simp add: Rep_int_choice_com_def cspT_Dist_fun_nonempty)
lemma cspT_Parallel_Dist_com_r_nonempty:
"Y ~= {}
==> P |[X]| (! :Y .. Qf) =T ! x:Y .. (P |[X]| Qf x)"
by (simp add: Rep_int_choice_com_def cspT_Dist_fun_nonempty)
lemma cspT_Ext_choice_Dist_com_l:
"(! :X .. Pf) [+] Q =T
IF (X ={}) THEN (DIV [+] Q) ELSE (! x:X .. (Pf x [+] Q))"
apply (simp add: Rep_int_choice_com_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist_fun)
apply (rule cspT_decompo)
apply (auto)
done
lemma cspT_Ext_choice_Dist_com_r:
"P [+] (! :X .. Qf) =T
IF (X ={}) THEN (P [+] DIV) ELSE (! x:X .. (P [+] Qf x))"
apply (simp add: Rep_int_choice_com_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist_fun)
apply (rule cspT_decompo)
apply (auto)
done
lemma cspT_Parallel_Dist_com_l:
"(! :Y .. Pf) |[X]| Q =T
IF (Y ={}) THEN (DIV |[X]| Q) ELSE (! x:Y .. (Pf x |[X]| Q))"
apply (simp add: Rep_int_choice_com_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist_fun)
apply (rule cspT_decompo)
apply (auto)
done
lemma cspT_Parallel_Dist_com_r:
"P |[X]| (! :Y .. Qf) =T
IF (Y ={}) THEN (P |[X]| DIV) ELSE (! x:Y .. (P |[X]| Qf x))"
apply (simp add: Rep_int_choice_com_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist_fun)
apply (rule cspT_decompo)
apply (auto)
done
lemma cspT_Hiding_Dist_com:
"(! :Y .. Pf) -- X =T ! x:Y .. (Pf x -- X)"
by (simp add: Rep_int_choice_com_def cspT_Dist_fun_nonempty)
lemma cspT_Renaming_Dist_com:
"(! :X .. Pf) [[r]] =T ! x:X .. (Pf x [[r]])"
by (simp add: Rep_int_choice_com_def cspT_Dist_fun_nonempty)
lemma cspT_Seq_compo_Dist_com:
"(! :X .. Pf) ;; Q =T ! x:X .. (Pf x ;; Q)"
by (simp add: Rep_int_choice_com_def cspT_Dist_fun_nonempty)
lemma cspT_Depth_rest_Dist_com:
"(! :X .. Pf) |. n =T ! x:X .. (Pf x |. n)"
by (simp add: Rep_int_choice_com_def cspT_Dist_fun_nonempty)
(*********************************************************
Dist laws
*********************************************************)
lemmas cspT_Dist_com = cspT_Ext_choice_Dist_com_l cspT_Ext_choice_Dist_com_r
cspT_Parallel_Dist_com_l cspT_Parallel_Dist_com_r
cspT_Hiding_Dist_com cspT_Renaming_Dist_com
cspT_Seq_compo_Dist_com cspT_Depth_rest_Dist_com
lemmas cspT_Dist_com_nonempty =
cspT_Ext_choice_Dist_com_l_nonempty cspT_Ext_choice_Dist_com_r_nonempty
cspT_Parallel_Dist_com_l_nonempty cspT_Parallel_Dist_com_r_nonempty
cspT_Hiding_Dist_com cspT_Renaming_Dist_com
cspT_Seq_compo_Dist_com cspT_Depth_rest_Dist_com
(*** all rules ***)
lemmas cspT_Dist = cspT_Dist0 cspT_Dist_fun cspT_Dist_com
lemmas cspT_Dist_nonempty = cspT_Dist0_nonempty
cspT_Dist_fun_nonempty
cspT_Dist_com_nonempty
(*****************************************************************
additional distribution over replicated internal choice
1. (!! :X .. (a -> P))
2. (!! :Y .. (? :X -> P))
*****************************************************************)
(*********************************************************
Dist law for Act_prefix
*********************************************************)
lemma cspT_Act_prefix_Dist0:
"C ~= {} ==>
a -> (!! :C .. Pf) =T !! c:C .. (a -> Pf c)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_traces)
apply (elim disjE conjE exE bexE)
apply (simp_all)
apply (force)
apply (force)
(* => *)
apply (rule)
apply (simp add: in_traces)
apply (elim disjE conjE exE bexE)
apply (simp_all)
apply (force)
done
(*********************************************************
Dist0 law for Ext_pre_choice
*********************************************************)
lemma cspT_Ext_pre_choice_Dist0:
"C ~= {} ==>
? x:X -> (!! c:C .. (Pf c) x) =T !! c:C .. (? :X -> (Pf c))"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_traces)
apply (elim disjE conjE exE bexE)
apply (simp_all)
apply (force)
apply (force)
(* => *)
apply (rule)
apply (simp add: in_traces)
apply (elim disjE conjE exE bexE)
apply (simp_all)
apply (force)
done
(*****************************************************************
for convenience
1. (!!<f> :X .. (a -> P))
2. (!!<f> :Y .. (? :X -> P))
*****************************************************************)
lemma cspT_Act_prefix_Dist_fun:
"X ~= {} ==>
a -> (!!<f> :X .. Pf) =T !!<f> x:X .. (a -> Pf x)"
by (simp add: Rep_int_choice_fun_def cspT_Act_prefix_Dist0)
lemma cspT_Ext_pre_choice_Dist_fun:
"Y ~= {} ==>
? x:X -> (!!<f> y:Y .. (Pf y) x) =T !!<f> y:Y .. (? :X -> (Pf y))"
by (simp add: Rep_int_choice_fun_def cspT_Ext_pre_choice_Dist0)
lemma cspT_Act_prefix_Dist_com:
"X ~= {} ==>
a -> (! :X .. Pf) =T ! x:X .. (a -> Pf x)"
by (simp add: Rep_int_choice_com_def cspT_Act_prefix_Dist_fun)
lemma cspT_Ext_pre_choice_Dist_com:
"Y ~= {} ==>
? x:X -> (! y:Y .. (Pf y) x) =T ! y:Y .. (? :X -> (Pf y))"
by (simp add: Rep_int_choice_com_def cspT_Ext_pre_choice_Dist_fun)
(*** arias ***)
lemmas cspT_Act_prefix_Dist
= cspT_Act_prefix_Dist0
cspT_Act_prefix_Dist_fun
cspT_Act_prefix_Dist_com
lemmas cspT_Ext_pre_choice_Dist
= cspT_Ext_pre_choice_Dist0
cspT_Ext_pre_choice_Dist_fun
cspT_Ext_pre_choice_Dist_com
(*****************************************************************
distribution over external choice
1. (P1 [+] P2) [[r]]
2. (P1 [+] P2) |. n
*****************************************************************)
(*********************
[[r]]-[+]-dist
*********************)
lemma cspT_Renaming_Ext_dist:
"(P1 [+] P2) [[r]] =T
(P1 [[r]]) [+] (P2 [[r]])"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule)
apply (simp add: in_traces)
apply (force)
(* <= *)
apply (rule)
apply (simp add: in_traces)
apply (force)
done
(*********************
|.-[+]-dist
*********************)
lemma cspT_Depth_rest_Ext_dist:
"(P1 [+] P2) |. n =T
(P1 |. n) [+] (P2 |. n)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule)
apply (simp add: in_traces)
(* <= *)
apply (rule)
apply (simp add: in_traces)
apply (force)
done
lemmas cspT_Ext_dist = cspT_Renaming_Ext_dist cspT_Depth_rest_Ext_dist
(*---------------------------------------------------------*
| complex distribution |
*---------------------------------------------------------*)
(*********************
!!-input-!set
*********************)
lemma cspT_Rep_int_choice_input_set:
"(!! c:C .. (? :(Yf c) -> Rff c))
=T
(!set Y : {Yf c|c. c:C} .. (? a : Y -> (!! c:{c:C. a : Yf c} .. Rff c a)))"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule, simp add: in_traces)
apply (elim disjE conjE exE bexE)
apply (simp_all)
apply (force)
(* <= *)
apply (rule, simp add: in_traces)
apply (elim disjE conjE exE)
apply (simp_all)
apply (fast)
apply (force)
done
(*-------------------------------*
!!-[+]-Dist
*-------------------------------*)
lemma cspT_Rep_int_choice_Ext_Dist:
"ALL c:C. (Qf c = SKIP | Qf c = DIV) ==>
(!! c:C .. (Pf c [+] Qf c)) =T
((!! :C .. Pf) [+] (!! :C .. Qf))"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_traces)
apply (elim conjE exE bexE disjE)
apply (simp_all)
apply (force)
apply (drule_tac x="c" in bspec)
apply (simp)
apply (erule disjE)
apply (simp_all add: in_traces)
apply (erule disjE)
apply (simp_all)
apply (rule disjI2)
apply (rule_tac x="c" in bexI)
apply (simp_all add: in_traces)
(* => *)
apply (rule)
apply (simp add: in_traces)
apply (elim conjE exE bexE disjE)
apply (simp_all)
apply (fast)
apply (fast)
done
(*-------------------------------*
!!-input-Dist
*-------------------------------*)
lemma cspT_Rep_int_choice_input:
"!set X:Xs .. (? :X -> Pf) =T (? :(Union Xs) -> Pf)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule, simp add: in_traces)
apply (force)
(* <= *)
apply (rule, simp add: in_traces)
apply (force)
done
lemma cspT_Rep_int_choice_input_Dist:
"(!set X:Xs .. (? :X -> Pf)) [+] Q =T (? :(Union Xs) -> Pf) [+] Q"
apply (rule cspT_decompo)
apply (rule cspT_Rep_int_choice_input)
apply (rule cspT_reflex)
done
(****************** to add them again ******************)
end
lemma cspT_Ext_choice_dist_l:
(P1.0 |~| P2.0) [+] Q =T P1.0 [+] Q |~| P2.0 [+] Q
lemma cspT_Ext_choice_dist_r:
P [+] (Q1.0 |~| Q2.0) =T P [+] Q1.0 |~| P [+] Q2.0
lemma cspT_Parallel_dist_l:
(P1.0 |~| P2.0) |[X]| Q =T P1.0 |[X]| Q |~| P2.0 |[X]| Q
lemma cspT_Parallel_dist_r:
P |[X]| (Q1.0 |~| Q2.0) =T P |[X]| Q1.0 |~| P |[X]| Q2.0
lemma cspT_Hiding_dist:
(P1.0 |~| P2.0) -- X =T P1.0 -- X |~| P2.0 -- X
lemma cspT_Renaming_dist:
(P1.0 |~| P2.0) [[r]] =T P1.0 [[r]] |~| P2.0 [[r]]
lemma cspT_Seq_compo_dist:
(P1.0 |~| P2.0) ;; Q =T P1.0 ;; Q |~| P2.0 ;; Q
lemma cspT_Depth_rest_dist:
(P1.0 |~| P2.0) |. n =T P1.0 |. n |~| P2.0 |. n
lemma cspT_Rep_int_choice_dist:
!! c:C .. (Pf c |~| Qf c) =T !! :C .. Pf |~| !! :C .. Qf
lemmas cspT_dist:
(P1.0 |~| P2.0) [+] Q =T P1.0 [+] Q |~| P2.0 [+] Q
P [+] (Q1.0 |~| Q2.0) =T P [+] Q1.0 |~| P [+] Q2.0
(P1.0 |~| P2.0) |[X]| Q =T P1.0 |[X]| Q |~| P2.0 |[X]| Q
P |[X]| (Q1.0 |~| Q2.0) =T P |[X]| Q1.0 |~| P |[X]| Q2.0
(P1.0 |~| P2.0) -- X =T P1.0 -- X |~| P2.0 -- X
(P1.0 |~| P2.0) [[r]] =T P1.0 [[r]] |~| P2.0 [[r]]
(P1.0 |~| P2.0) ;; Q =T P1.0 ;; Q |~| P2.0 ;; Q
(P1.0 |~| P2.0) |. n =T P1.0 |. n |~| P2.0 |. n
!! c:C .. (Pf c |~| Qf c) =T !! :C .. Pf |~| !! :C .. Qf
lemmas cspT_dist:
(P1.0 |~| P2.0) [+] Q =T P1.0 [+] Q |~| P2.0 [+] Q
P [+] (Q1.0 |~| Q2.0) =T P [+] Q1.0 |~| P [+] Q2.0
(P1.0 |~| P2.0) |[X]| Q =T P1.0 |[X]| Q |~| P2.0 |[X]| Q
P |[X]| (Q1.0 |~| Q2.0) =T P |[X]| Q1.0 |~| P |[X]| Q2.0
(P1.0 |~| P2.0) -- X =T P1.0 -- X |~| P2.0 -- X
(P1.0 |~| P2.0) [[r]] =T P1.0 [[r]] |~| P2.0 [[r]]
(P1.0 |~| P2.0) ;; Q =T P1.0 ;; Q |~| P2.0 ;; Q
(P1.0 |~| P2.0) |. n =T P1.0 |. n |~| P2.0 |. n
!! c:C .. (Pf c |~| Qf c) =T !! :C .. Pf |~| !! :C .. Qf
lemma cspT_Ext_choice_Dist0_l_nonempty:
C ≠ {} ==> (!! :C .. Pf) [+] Q =T !! c:C .. Pf c [+] Q
lemma cspT_Ext_choice_Dist0_l:
(!! :C .. Pf) [+] Q =T IF (C = {}) THEN DIV [+] Q ELSE !! c:C .. Pf c [+] Q
lemma cspT_Ext_choice_Dist0_r_nonempty:
C ≠ {} ==> P [+] (!! :C .. Qf) =T !! c:C .. P [+] Qf c
lemma cspT_Ext_choice_Dist0_r:
P [+] (!! :C .. Qf) =T IF (C = {}) THEN P [+] DIV ELSE !! c:C .. P [+] Qf c
lemma cspT_Parallel_Dist0_l_nonempty:
C ≠ {} ==> (!! :C .. Pf) |[X]| Q =T !! c:C .. Pf c |[X]| Q
lemma cspT_Parallel_Dist0_l:
(!! :C .. Pf) |[X]| Q =T IF (C = {}) THEN DIV |[X]| Q ELSE !! c:C .. Pf c |[X]| Q
lemma cspT_Parallel_Dist0_r_nonempty:
C ≠ {} ==> P |[X]| (!! :C .. Qf) =T !! c:C .. P |[X]| Qf c
lemma cspT_Parallel_Dist0_r:
P |[X]| (!! :C .. Qf) =T IF (C = {}) THEN P |[X]| DIV ELSE !! c:C .. P |[X]| Qf c
lemma cspT_Hiding_Dist0:
(!! :C .. Pf) -- X =T !! c:C .. Pf c -- X
lemma cspT_Renaming_Dist0:
(!! :C .. Pf) [[r]] =T !! c:C .. Pf c [[r]]
lemma cspT_Seq_compo_Dist0:
(!! :C .. Pf) ;; Q =T !! c:C .. Pf c ;; Q
lemma cspT_Depth_rest_Dist0:
(!! :C .. Pf) |. n =T !! c:C .. Pf c |. n
lemmas cspT_Dist0:
(!! :C .. Pf) [+] Q =T IF (C = {}) THEN DIV [+] Q ELSE !! c:C .. Pf c [+] Q
P [+] (!! :C .. Qf) =T IF (C = {}) THEN P [+] DIV ELSE !! c:C .. P [+] Qf c
(!! :C .. Pf) |[X]| Q =T IF (C = {}) THEN DIV |[X]| Q ELSE !! c:C .. Pf c |[X]| Q
P |[X]| (!! :C .. Qf) =T IF (C = {}) THEN P |[X]| DIV ELSE !! c:C .. P |[X]| Qf c
(!! :C .. Pf) -- X =T !! c:C .. Pf c -- X
(!! :C .. Pf) [[r]] =T !! c:C .. Pf c [[r]]
(!! :C .. Pf) ;; Q =T !! c:C .. Pf c ;; Q
(!! :C .. Pf) |. n =T !! c:C .. Pf c |. n
lemmas cspT_Dist0:
(!! :C .. Pf) [+] Q =T IF (C = {}) THEN DIV [+] Q ELSE !! c:C .. Pf c [+] Q
P [+] (!! :C .. Qf) =T IF (C = {}) THEN P [+] DIV ELSE !! c:C .. P [+] Qf c
(!! :C .. Pf) |[X]| Q =T IF (C = {}) THEN DIV |[X]| Q ELSE !! c:C .. Pf c |[X]| Q
P |[X]| (!! :C .. Qf) =T IF (C = {}) THEN P |[X]| DIV ELSE !! c:C .. P |[X]| Qf c
(!! :C .. Pf) -- X =T !! c:C .. Pf c -- X
(!! :C .. Pf) [[r]] =T !! c:C .. Pf c [[r]]
(!! :C .. Pf) ;; Q =T !! c:C .. Pf c ;; Q
(!! :C .. Pf) |. n =T !! c:C .. Pf c |. n
lemmas cspT_Dist0_nonempty:
C ≠ {} ==> (!! :C .. Pf) [+] Q =T !! c:C .. Pf c [+] Q
C ≠ {} ==> P [+] (!! :C .. Qf) =T !! c:C .. P [+] Qf c
C ≠ {} ==> (!! :C .. Pf) |[X]| Q =T !! c:C .. Pf c |[X]| Q
C ≠ {} ==> P |[X]| (!! :C .. Qf) =T !! c:C .. P |[X]| Qf c
(!! :C .. Pf) -- X =T !! c:C .. Pf c -- X
(!! :C .. Pf) [[r]] =T !! c:C .. Pf c [[r]]
(!! :C .. Pf) ;; Q =T !! c:C .. Pf c ;; Q
(!! :C .. Pf) |. n =T !! c:C .. Pf c |. n
lemmas cspT_Dist0_nonempty:
C ≠ {} ==> (!! :C .. Pf) [+] Q =T !! c:C .. Pf c [+] Q
C ≠ {} ==> P [+] (!! :C .. Qf) =T !! c:C .. P [+] Qf c
C ≠ {} ==> (!! :C .. Pf) |[X]| Q =T !! c:C .. Pf c |[X]| Q
C ≠ {} ==> P |[X]| (!! :C .. Qf) =T !! c:C .. P |[X]| Qf c
(!! :C .. Pf) -- X =T !! c:C .. Pf c -- X
(!! :C .. Pf) [[r]] =T !! c:C .. Pf c [[r]]
(!! :C .. Pf) ;; Q =T !! c:C .. Pf c ;; Q
(!! :C .. Pf) |. n =T !! c:C .. Pf c |. n
lemma cspT_Ext_choice_Dist_fun_l_nonempty:
[| inj f; X ≠ {} |] ==> (!!<f> :X .. Pf) [+] Q =T !!<f> x:X .. Pf x [+] Q
lemma cspT_Ext_choice_Dist_fun_r_nonempty:
[| inj f; X ≠ {} |] ==> P [+] (!!<f> :X .. Qf) =T !!<f> x:X .. P [+] Qf x
lemma cspT_Parallel_Dist_fun_l_nonempty:
[| inj f; Y ≠ {} |] ==> (!!<f> :Y .. Pf) |[X]| Q =T !!<f> x:Y .. Pf x |[X]| Q
lemma cspT_Parallel_Dist_fun_r_nonempty:
[| inj f; Y ≠ {} |] ==> P |[X]| (!!<f> :Y .. Qf) =T !!<f> x:Y .. P |[X]| Qf x
lemma cspT_Ext_choice_Dist_fun_l:
(!!<f> :X .. Pf) [+] Q =T IF (X = {}) THEN DIV [+] Q ELSE !!<f> x:X .. Pf x [+] Q
lemma cspT_Ext_choice_Dist_fun_r:
P [+] (!!<f> :X .. Qf) =T IF (X = {}) THEN P [+] DIV ELSE !!<f> x:X .. P [+] Qf x
lemma cspT_Parallel_Dist_fun_l:
(!!<f> :Y .. Pf) |[X]| Q =T IF (Y = {}) THEN DIV |[X]| Q ELSE !!<f> x:Y .. Pf x |[X]| Q
lemma cspT_Parallel_Dist_fun_r:
P |[X]| (!!<f> :Y .. Qf) =T IF (Y = {}) THEN P |[X]| DIV ELSE !!<f> x:Y .. P |[X]| Qf x
lemma cspT_Hiding_Dist_fun:
(!!<f> :Y .. Pf) -- X =T !!<f> x:Y .. Pf x -- X
lemma cspT_Renaming_Dist_fun:
(!!<f> :X .. Pf) [[r]] =T !!<f> x:X .. Pf x [[r]]
lemma cspT_Seq_compo_Dist_fun:
(!!<f> :X .. Pf) ;; Q =T !!<f> x:X .. Pf x ;; Q
lemma cspT_Depth_rest_Dist_fun:
(!!<f> :X .. Pf) |. n =T !!<f> x:X .. Pf x |. n
lemmas cspT_Dist_fun:
(!!<f> :X .. Pf) [+] Q =T IF (X = {}) THEN DIV [+] Q ELSE !!<f> x:X .. Pf x [+] Q
P [+] (!!<f> :X .. Qf) =T IF (X = {}) THEN P [+] DIV ELSE !!<f> x:X .. P [+] Qf x
(!!<f> :Y .. Pf) |[X]| Q =T IF (Y = {}) THEN DIV |[X]| Q ELSE !!<f> x:Y .. Pf x |[X]| Q
P |[X]| (!!<f> :Y .. Qf) =T IF (Y = {}) THEN P |[X]| DIV ELSE !!<f> x:Y .. P |[X]| Qf x
(!!<f> :Y .. Pf) -- X =T !!<f> x:Y .. Pf x -- X
(!!<f> :X .. Pf) [[r]] =T !!<f> x:X .. Pf x [[r]]
(!!<f> :X .. Pf) ;; Q =T !!<f> x:X .. Pf x ;; Q
(!!<f> :X .. Pf) |. n =T !!<f> x:X .. Pf x |. n
lemmas cspT_Dist_fun:
(!!<f> :X .. Pf) [+] Q =T IF (X = {}) THEN DIV [+] Q ELSE !!<f> x:X .. Pf x [+] Q
P [+] (!!<f> :X .. Qf) =T IF (X = {}) THEN P [+] DIV ELSE !!<f> x:X .. P [+] Qf x
(!!<f> :Y .. Pf) |[X]| Q =T IF (Y = {}) THEN DIV |[X]| Q ELSE !!<f> x:Y .. Pf x |[X]| Q
P |[X]| (!!<f> :Y .. Qf) =T IF (Y = {}) THEN P |[X]| DIV ELSE !!<f> x:Y .. P |[X]| Qf x
(!!<f> :Y .. Pf) -- X =T !!<f> x:Y .. Pf x -- X
(!!<f> :X .. Pf) [[r]] =T !!<f> x:X .. Pf x [[r]]
(!!<f> :X .. Pf) ;; Q =T !!<f> x:X .. Pf x ;; Q
(!!<f> :X .. Pf) |. n =T !!<f> x:X .. Pf x |. n
lemmas cspT_Dist_fun_nonempty:
[| inj f; X ≠ {} |] ==> (!!<f> :X .. Pf) [+] Q =T !!<f> x:X .. Pf x [+] Q
[| inj f; X ≠ {} |] ==> P [+] (!!<f> :X .. Qf) =T !!<f> x:X .. P [+] Qf x
[| inj f; Y ≠ {} |] ==> (!!<f> :Y .. Pf) |[X]| Q =T !!<f> x:Y .. Pf x |[X]| Q
[| inj f; Y ≠ {} |] ==> P |[X]| (!!<f> :Y .. Qf) =T !!<f> x:Y .. P |[X]| Qf x
(!!<f> :Y .. Pf) -- X =T !!<f> x:Y .. Pf x -- X
(!!<f> :X .. Pf) [[r]] =T !!<f> x:X .. Pf x [[r]]
(!!<f> :X .. Pf) ;; Q =T !!<f> x:X .. Pf x ;; Q
(!!<f> :X .. Pf) |. n =T !!<f> x:X .. Pf x |. n
lemmas cspT_Dist_fun_nonempty:
[| inj f; X ≠ {} |] ==> (!!<f> :X .. Pf) [+] Q =T !!<f> x:X .. Pf x [+] Q
[| inj f; X ≠ {} |] ==> P [+] (!!<f> :X .. Qf) =T !!<f> x:X .. P [+] Qf x
[| inj f; Y ≠ {} |] ==> (!!<f> :Y .. Pf) |[X]| Q =T !!<f> x:Y .. Pf x |[X]| Q
[| inj f; Y ≠ {} |] ==> P |[X]| (!!<f> :Y .. Qf) =T !!<f> x:Y .. P |[X]| Qf x
(!!<f> :Y .. Pf) -- X =T !!<f> x:Y .. Pf x -- X
(!!<f> :X .. Pf) [[r]] =T !!<f> x:X .. Pf x [[r]]
(!!<f> :X .. Pf) ;; Q =T !!<f> x:X .. Pf x ;; Q
(!!<f> :X .. Pf) |. n =T !!<f> x:X .. Pf x |. n
lemma cspT_Ext_choice_Dist_com_l_nonempty:
X ≠ {} ==> (! :X .. Pf) [+] Q =T ! x:X .. Pf x [+] Q
lemma cspT_Ext_choice_Dist_com_r_nonempty:
X ≠ {} ==> P [+] (! :X .. Qf) =T ! x:X .. P [+] Qf x
lemma cspT_Parallel_Dist_com_l_nonempty:
Y ≠ {} ==> (! :Y .. Pf) |[X]| Q =T ! x:Y .. Pf x |[X]| Q
lemma cspT_Parallel_Dist_com_r_nonempty:
Y ≠ {} ==> P |[X]| (! :Y .. Qf) =T ! x:Y .. P |[X]| Qf x
lemma cspT_Ext_choice_Dist_com_l:
(! :X .. Pf) [+] Q =T IF (X = {}) THEN DIV [+] Q ELSE ! x:X .. Pf x [+] Q
lemma cspT_Ext_choice_Dist_com_r:
P [+] (! :X .. Qf) =T IF (X = {}) THEN P [+] DIV ELSE ! x:X .. P [+] Qf x
lemma cspT_Parallel_Dist_com_l:
(! :Y .. Pf) |[X]| Q =T IF (Y = {}) THEN DIV |[X]| Q ELSE ! x:Y .. Pf x |[X]| Q
lemma cspT_Parallel_Dist_com_r:
P |[X]| (! :Y .. Qf) =T IF (Y = {}) THEN P |[X]| DIV ELSE ! x:Y .. P |[X]| Qf x
lemma cspT_Hiding_Dist_com:
(! :Y .. Pf) -- X =T ! x:Y .. Pf x -- X
lemma cspT_Renaming_Dist_com:
(! :X .. Pf) [[r]] =T ! x:X .. Pf x [[r]]
lemma cspT_Seq_compo_Dist_com:
(! :X .. Pf) ;; Q =T ! x:X .. Pf x ;; Q
lemma cspT_Depth_rest_Dist_com:
(! :X .. Pf) |. n =T ! x:X .. Pf x |. n
lemmas cspT_Dist_com:
(! :X .. Pf) [+] Q =T IF (X = {}) THEN DIV [+] Q ELSE ! x:X .. Pf x [+] Q
P [+] (! :X .. Qf) =T IF (X = {}) THEN P [+] DIV ELSE ! x:X .. P [+] Qf x
(! :Y .. Pf) |[X]| Q =T IF (Y = {}) THEN DIV |[X]| Q ELSE ! x:Y .. Pf x |[X]| Q
P |[X]| (! :Y .. Qf) =T IF (Y = {}) THEN P |[X]| DIV ELSE ! x:Y .. P |[X]| Qf x
(! :Y .. Pf) -- X =T ! x:Y .. Pf x -- X
(! :X .. Pf) [[r]] =T ! x:X .. Pf x [[r]]
(! :X .. Pf) ;; Q =T ! x:X .. Pf x ;; Q
(! :X .. Pf) |. n =T ! x:X .. Pf x |. n
lemmas cspT_Dist_com:
(! :X .. Pf) [+] Q =T IF (X = {}) THEN DIV [+] Q ELSE ! x:X .. Pf x [+] Q
P [+] (! :X .. Qf) =T IF (X = {}) THEN P [+] DIV ELSE ! x:X .. P [+] Qf x
(! :Y .. Pf) |[X]| Q =T IF (Y = {}) THEN DIV |[X]| Q ELSE ! x:Y .. Pf x |[X]| Q
P |[X]| (! :Y .. Qf) =T IF (Y = {}) THEN P |[X]| DIV ELSE ! x:Y .. P |[X]| Qf x
(! :Y .. Pf) -- X =T ! x:Y .. Pf x -- X
(! :X .. Pf) [[r]] =T ! x:X .. Pf x [[r]]
(! :X .. Pf) ;; Q =T ! x:X .. Pf x ;; Q
(! :X .. Pf) |. n =T ! x:X .. Pf x |. n
lemmas cspT_Dist_com_nonempty:
X ≠ {} ==> (! :X .. Pf) [+] Q =T ! x:X .. Pf x [+] Q
X ≠ {} ==> P [+] (! :X .. Qf) =T ! x:X .. P [+] Qf x
Y ≠ {} ==> (! :Y .. Pf) |[X]| Q =T ! x:Y .. Pf x |[X]| Q
Y ≠ {} ==> P |[X]| (! :Y .. Qf) =T ! x:Y .. P |[X]| Qf x
(! :Y .. Pf) -- X =T ! x:Y .. Pf x -- X
(! :X .. Pf) [[r]] =T ! x:X .. Pf x [[r]]
(! :X .. Pf) ;; Q =T ! x:X .. Pf x ;; Q
(! :X .. Pf) |. n =T ! x:X .. Pf x |. n
lemmas cspT_Dist_com_nonempty:
X ≠ {} ==> (! :X .. Pf) [+] Q =T ! x:X .. Pf x [+] Q
X ≠ {} ==> P [+] (! :X .. Qf) =T ! x:X .. P [+] Qf x
Y ≠ {} ==> (! :Y .. Pf) |[X]| Q =T ! x:Y .. Pf x |[X]| Q
Y ≠ {} ==> P |[X]| (! :Y .. Qf) =T ! x:Y .. P |[X]| Qf x
(! :Y .. Pf) -- X =T ! x:Y .. Pf x -- X
(! :X .. Pf) [[r]] =T ! x:X .. Pf x [[r]]
(! :X .. Pf) ;; Q =T ! x:X .. Pf x ;; Q
(! :X .. Pf) |. n =T ! x:X .. Pf x |. n
lemmas cspT_Dist:
(!! :C .. Pf) [+] Q =T IF (C = {}) THEN DIV [+] Q ELSE !! c:C .. Pf c [+] Q
P [+] (!! :C .. Qf) =T IF (C = {}) THEN P [+] DIV ELSE !! c:C .. P [+] Qf c
(!! :C .. Pf) |[X]| Q =T IF (C = {}) THEN DIV |[X]| Q ELSE !! c:C .. Pf c |[X]| Q
P |[X]| (!! :C .. Qf) =T IF (C = {}) THEN P |[X]| DIV ELSE !! c:C .. P |[X]| Qf c
(!! :C .. Pf) -- X =T !! c:C .. Pf c -- X
(!! :C .. Pf) [[r]] =T !! c:C .. Pf c [[r]]
(!! :C .. Pf) ;; Q =T !! c:C .. Pf c ;; Q
(!! :C .. Pf) |. n =T !! c:C .. Pf c |. n
(!!<f> :X .. Pf) [+] Q =T IF (X = {}) THEN DIV [+] Q ELSE !!<f> x:X .. Pf x [+] Q
P [+] (!!<f> :X .. Qf) =T IF (X = {}) THEN P [+] DIV ELSE !!<f> x:X .. P [+] Qf x
(!!<f> :Y .. Pf) |[X]| Q =T IF (Y = {}) THEN DIV |[X]| Q ELSE !!<f> x:Y .. Pf x |[X]| Q
P |[X]| (!!<f> :Y .. Qf) =T IF (Y = {}) THEN P |[X]| DIV ELSE !!<f> x:Y .. P |[X]| Qf x
(!!<f> :Y .. Pf) -- X =T !!<f> x:Y .. Pf x -- X
(!!<f> :X .. Pf) [[r]] =T !!<f> x:X .. Pf x [[r]]
(!!<f> :X .. Pf) ;; Q =T !!<f> x:X .. Pf x ;; Q
(!!<f> :X .. Pf) |. n =T !!<f> x:X .. Pf x |. n
(! :X .. Pf) [+] Q =T IF (X = {}) THEN DIV [+] Q ELSE ! x:X .. Pf x [+] Q
P [+] (! :X .. Qf) =T IF (X = {}) THEN P [+] DIV ELSE ! x:X .. P [+] Qf x
(! :Y .. Pf) |[X]| Q =T IF (Y = {}) THEN DIV |[X]| Q ELSE ! x:Y .. Pf x |[X]| Q
P |[X]| (! :Y .. Qf) =T IF (Y = {}) THEN P |[X]| DIV ELSE ! x:Y .. P |[X]| Qf x
(! :Y .. Pf) -- X =T ! x:Y .. Pf x -- X
(! :X .. Pf) [[r]] =T ! x:X .. Pf x [[r]]
(! :X .. Pf) ;; Q =T ! x:X .. Pf x ;; Q
(! :X .. Pf) |. n =T ! x:X .. Pf x |. n
lemmas cspT_Dist:
(!! :C .. Pf) [+] Q =T IF (C = {}) THEN DIV [+] Q ELSE !! c:C .. Pf c [+] Q
P [+] (!! :C .. Qf) =T IF (C = {}) THEN P [+] DIV ELSE !! c:C .. P [+] Qf c
(!! :C .. Pf) |[X]| Q =T IF (C = {}) THEN DIV |[X]| Q ELSE !! c:C .. Pf c |[X]| Q
P |[X]| (!! :C .. Qf) =T IF (C = {}) THEN P |[X]| DIV ELSE !! c:C .. P |[X]| Qf c
(!! :C .. Pf) -- X =T !! c:C .. Pf c -- X
(!! :C .. Pf) [[r]] =T !! c:C .. Pf c [[r]]
(!! :C .. Pf) ;; Q =T !! c:C .. Pf c ;; Q
(!! :C .. Pf) |. n =T !! c:C .. Pf c |. n
(!!<f> :X .. Pf) [+] Q =T IF (X = {}) THEN DIV [+] Q ELSE !!<f> x:X .. Pf x [+] Q
P [+] (!!<f> :X .. Qf) =T IF (X = {}) THEN P [+] DIV ELSE !!<f> x:X .. P [+] Qf x
(!!<f> :Y .. Pf) |[X]| Q =T IF (Y = {}) THEN DIV |[X]| Q ELSE !!<f> x:Y .. Pf x |[X]| Q
P |[X]| (!!<f> :Y .. Qf) =T IF (Y = {}) THEN P |[X]| DIV ELSE !!<f> x:Y .. P |[X]| Qf x
(!!<f> :Y .. Pf) -- X =T !!<f> x:Y .. Pf x -- X
(!!<f> :X .. Pf) [[r]] =T !!<f> x:X .. Pf x [[r]]
(!!<f> :X .. Pf) ;; Q =T !!<f> x:X .. Pf x ;; Q
(!!<f> :X .. Pf) |. n =T !!<f> x:X .. Pf x |. n
(! :X .. Pf) [+] Q =T IF (X = {}) THEN DIV [+] Q ELSE ! x:X .. Pf x [+] Q
P [+] (! :X .. Qf) =T IF (X = {}) THEN P [+] DIV ELSE ! x:X .. P [+] Qf x
(! :Y .. Pf) |[X]| Q =T IF (Y = {}) THEN DIV |[X]| Q ELSE ! x:Y .. Pf x |[X]| Q
P |[X]| (! :Y .. Qf) =T IF (Y = {}) THEN P |[X]| DIV ELSE ! x:Y .. P |[X]| Qf x
(! :Y .. Pf) -- X =T ! x:Y .. Pf x -- X
(! :X .. Pf) [[r]] =T ! x:X .. Pf x [[r]]
(! :X .. Pf) ;; Q =T ! x:X .. Pf x ;; Q
(! :X .. Pf) |. n =T ! x:X .. Pf x |. n
lemmas cspT_Dist_nonempty:
C ≠ {} ==> (!! :C .. Pf) [+] Q =T !! c:C .. Pf c [+] Q
C ≠ {} ==> P [+] (!! :C .. Qf) =T !! c:C .. P [+] Qf c
C ≠ {} ==> (!! :C .. Pf) |[X]| Q =T !! c:C .. Pf c |[X]| Q
C ≠ {} ==> P |[X]| (!! :C .. Qf) =T !! c:C .. P |[X]| Qf c
(!! :C .. Pf) -- X =T !! c:C .. Pf c -- X
(!! :C .. Pf) [[r]] =T !! c:C .. Pf c [[r]]
(!! :C .. Pf) ;; Q =T !! c:C .. Pf c ;; Q
(!! :C .. Pf) |. n =T !! c:C .. Pf c |. n
[| inj f; X ≠ {} |] ==> (!!<f> :X .. Pf) [+] Q =T !!<f> x:X .. Pf x [+] Q
[| inj f; X ≠ {} |] ==> P [+] (!!<f> :X .. Qf) =T !!<f> x:X .. P [+] Qf x
[| inj f; Y ≠ {} |] ==> (!!<f> :Y .. Pf) |[X]| Q =T !!<f> x:Y .. Pf x |[X]| Q
[| inj f; Y ≠ {} |] ==> P |[X]| (!!<f> :Y .. Qf) =T !!<f> x:Y .. P |[X]| Qf x
(!!<f> :Y .. Pf) -- X =T !!<f> x:Y .. Pf x -- X
(!!<f> :X .. Pf) [[r]] =T !!<f> x:X .. Pf x [[r]]
(!!<f> :X .. Pf) ;; Q =T !!<f> x:X .. Pf x ;; Q
(!!<f> :X .. Pf) |. n =T !!<f> x:X .. Pf x |. n
X ≠ {} ==> (! :X .. Pf) [+] Q =T ! x:X .. Pf x [+] Q
X ≠ {} ==> P [+] (! :X .. Qf) =T ! x:X .. P [+] Qf x
Y ≠ {} ==> (! :Y .. Pf) |[X]| Q =T ! x:Y .. Pf x |[X]| Q
Y ≠ {} ==> P |[X]| (! :Y .. Qf) =T ! x:Y .. P |[X]| Qf x
(! :Y .. Pf) -- X =T ! x:Y .. Pf x -- X
(! :X .. Pf) [[r]] =T ! x:X .. Pf x [[r]]
(! :X .. Pf) ;; Q =T ! x:X .. Pf x ;; Q
(! :X .. Pf) |. n =T ! x:X .. Pf x |. n
lemmas cspT_Dist_nonempty:
C ≠ {} ==> (!! :C .. Pf) [+] Q =T !! c:C .. Pf c [+] Q
C ≠ {} ==> P [+] (!! :C .. Qf) =T !! c:C .. P [+] Qf c
C ≠ {} ==> (!! :C .. Pf) |[X]| Q =T !! c:C .. Pf c |[X]| Q
C ≠ {} ==> P |[X]| (!! :C .. Qf) =T !! c:C .. P |[X]| Qf c
(!! :C .. Pf) -- X =T !! c:C .. Pf c -- X
(!! :C .. Pf) [[r]] =T !! c:C .. Pf c [[r]]
(!! :C .. Pf) ;; Q =T !! c:C .. Pf c ;; Q
(!! :C .. Pf) |. n =T !! c:C .. Pf c |. n
[| inj f; X ≠ {} |] ==> (!!<f> :X .. Pf) [+] Q =T !!<f> x:X .. Pf x [+] Q
[| inj f; X ≠ {} |] ==> P [+] (!!<f> :X .. Qf) =T !!<f> x:X .. P [+] Qf x
[| inj f; Y ≠ {} |] ==> (!!<f> :Y .. Pf) |[X]| Q =T !!<f> x:Y .. Pf x |[X]| Q
[| inj f; Y ≠ {} |] ==> P |[X]| (!!<f> :Y .. Qf) =T !!<f> x:Y .. P |[X]| Qf x
(!!<f> :Y .. Pf) -- X =T !!<f> x:Y .. Pf x -- X
(!!<f> :X .. Pf) [[r]] =T !!<f> x:X .. Pf x [[r]]
(!!<f> :X .. Pf) ;; Q =T !!<f> x:X .. Pf x ;; Q
(!!<f> :X .. Pf) |. n =T !!<f> x:X .. Pf x |. n
X ≠ {} ==> (! :X .. Pf) [+] Q =T ! x:X .. Pf x [+] Q
X ≠ {} ==> P [+] (! :X .. Qf) =T ! x:X .. P [+] Qf x
Y ≠ {} ==> (! :Y .. Pf) |[X]| Q =T ! x:Y .. Pf x |[X]| Q
Y ≠ {} ==> P |[X]| (! :Y .. Qf) =T ! x:Y .. P |[X]| Qf x
(! :Y .. Pf) -- X =T ! x:Y .. Pf x -- X
(! :X .. Pf) [[r]] =T ! x:X .. Pf x [[r]]
(! :X .. Pf) ;; Q =T ! x:X .. Pf x ;; Q
(! :X .. Pf) |. n =T ! x:X .. Pf x |. n
lemma cspT_Act_prefix_Dist0:
C ≠ {} ==> a -> (!! :C .. Pf) =T !! c:C .. a -> Pf c
lemma cspT_Ext_pre_choice_Dist0:
C ≠ {} ==> ? x:X -> (!! c:C .. Pf c x) =T !! c:C .. ? :X -> Pf c
lemma cspT_Act_prefix_Dist_fun:
X ≠ {} ==> a -> (!!<f> :X .. Pf) =T !!<f> x:X .. a -> Pf x
lemma cspT_Ext_pre_choice_Dist_fun:
Y ≠ {} ==> ? x:X -> (!!<f> y:Y .. Pf y x) =T !!<f> y:Y .. ? :X -> Pf y
lemma cspT_Act_prefix_Dist_com:
X ≠ {} ==> a -> (! :X .. Pf) =T ! x:X .. a -> Pf x
lemma cspT_Ext_pre_choice_Dist_com:
Y ≠ {} ==> ? x:X -> (! y:Y .. Pf y x) =T ! y:Y .. ? :X -> Pf y
lemmas cspT_Act_prefix_Dist:
C ≠ {} ==> a -> (!! :C .. Pf) =T !! c:C .. a -> Pf c
X ≠ {} ==> a -> (!!<f> :X .. Pf) =T !!<f> x:X .. a -> Pf x
X ≠ {} ==> a -> (! :X .. Pf) =T ! x:X .. a -> Pf x
lemmas cspT_Act_prefix_Dist:
C ≠ {} ==> a -> (!! :C .. Pf) =T !! c:C .. a -> Pf c
X ≠ {} ==> a -> (!!<f> :X .. Pf) =T !!<f> x:X .. a -> Pf x
X ≠ {} ==> a -> (! :X .. Pf) =T ! x:X .. a -> Pf x
lemmas cspT_Ext_pre_choice_Dist:
C ≠ {} ==> ? x:X -> (!! c:C .. Pf c x) =T !! c:C .. ? :X -> Pf c
Y ≠ {} ==> ? x:X -> (!!<f> y:Y .. Pf y x) =T !!<f> y:Y .. ? :X -> Pf y
Y ≠ {} ==> ? x:X -> (! y:Y .. Pf y x) =T ! y:Y .. ? :X -> Pf y
lemmas cspT_Ext_pre_choice_Dist:
C ≠ {} ==> ? x:X -> (!! c:C .. Pf c x) =T !! c:C .. ? :X -> Pf c
Y ≠ {} ==> ? x:X -> (!!<f> y:Y .. Pf y x) =T !!<f> y:Y .. ? :X -> Pf y
Y ≠ {} ==> ? x:X -> (! y:Y .. Pf y x) =T ! y:Y .. ? :X -> Pf y
lemma cspT_Renaming_Ext_dist:
(P1.0 [+] P2.0) [[r]] =T P1.0 [[r]] [+] P2.0 [[r]]
lemma cspT_Depth_rest_Ext_dist:
(P1.0 [+] P2.0) |. n =T P1.0 |. n [+] P2.0 |. n
lemmas cspT_Ext_dist:
(P1.0 [+] P2.0) [[r]] =T P1.0 [[r]] [+] P2.0 [[r]]
(P1.0 [+] P2.0) |. n =T P1.0 |. n [+] P2.0 |. n
lemmas cspT_Ext_dist:
(P1.0 [+] P2.0) [[r]] =T P1.0 [[r]] [+] P2.0 [[r]]
(P1.0 [+] P2.0) |. n =T P1.0 |. n [+] P2.0 |. n
lemma cspT_Rep_int_choice_input_set:
!! c:C .. ? :Yf c -> Rff c =T !set Y:{Yf c |c. c ∈ C} .. ? a:Y -> (!! c:{c : C. a ∈ Yf c} .. Rff c a)
lemma cspT_Rep_int_choice_Ext_Dist:
∀c∈C. Qf c = SKIP ∨ Qf c = DIV ==> !! c:C .. Pf c [+] Qf c =T (!! :C .. Pf) [+] (!! :C .. Qf)
lemma cspT_Rep_int_choice_input:
!set X:Xs .. ? :X -> Pf =T ? :Union Xs -> Pf
lemma cspT_Rep_int_choice_input_Dist:
(!set X:Xs .. ? :X -> Pf) [+] Q =T ? :Union Xs -> Pf [+] Q