Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_law(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | June 2005 (modified) | | September 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | November 2005 (modified) | | December 2005 (modified) | | April 2006 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_F_law = CSP_F_law_SKIP + CSP_F_law_ref + CSP_F_law_dist + CSP_F_law_alpha_par + CSP_F_law_step + CSP_F_law_rep_par + CSP_F_law_fp + CSP_F_law_DIV + CSP_F_law_SKIP_DIV + CSP_F_law_step_ext + CSP_F_law_norm + CSP_T_law: (********************************************************* SKIP , DIV and Internal choice *********************************************************) (*** |~| ***) lemma cspF_SKIP_DIV_Int_choice: "[| P = SKIP | P = DIV ; Q = SKIP | Q = DIV |] ==> (P |~| Q) =F (if (P = SKIP | Q = SKIP) then SKIP else DIV)" apply (elim disjE) apply (simp_all) apply (rule cspF_rw_left) apply (rule cspF_idem) apply (rule cspF_reflex) apply (rule cspF_rw_left) apply (rule cspF_unit) apply (rule cspF_reflex) apply (rule cspF_rw_left) apply (rule cspF_unit) apply (rule cspF_reflex) apply (rule cspF_rw_left) apply (rule cspF_idem) apply (rule cspF_reflex) done (*** !! ***) lemma cspF_SKIP_DIV_Rep_int_choice: "[| ALL c:C. (Qf c = SKIP | Qf c = DIV) |] ==> (!! c:C .. Qf c) =F (if (EX c:C. Qf c = SKIP) then SKIP else DIV)" apply (case_tac "C={}") apply (simp add: cspF_Rep_int_choice_empty) apply (case_tac "ALL c:C. Qf c = DIV") apply (simp) apply (rule cspF_rw_left) apply (rule cspF_Rep_int_choice_const) apply (simp) apply (force) apply (simp) apply (simp) apply (elim bexE) apply (frule_tac x="c" in bspec) apply (simp_all) apply (intro conjI impI) apply (rule cspF_rw_left) apply (subgoal_tac "!! :C .. Qf =F !! :({c:C. Qf c = SKIP} Un {c:C. Qf c = DIV}) .. Qf") apply (simp) apply (rule cspF_decompo) apply (force) apply (simp) apply (rule cspF_rw_left) apply (rule cspF_Rep_int_choice_union_Int) apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (rule cspF_Rep_int_choice_const) apply (force) apply (rule ballI) apply (simp) apply (case_tac "{c : C. Qf c = DIV}={}") apply (simp (no_asm_simp)) apply (rule cspF_Rep_int_choice0_DIV) apply (rule cspF_rw_left) apply (rule cspF_Rep_int_choice_const) apply (simp_all) apply (simp) apply (rule cspF_unit) done end
lemma cspF_SKIP_DIV_Int_choice:
[| P = SKIP ∨ P = DIV; Q = SKIP ∨ Q = DIV |] ==> P |~| Q =F (if P = SKIP ∨ Q = SKIP then SKIP else DIV)
lemma cspF_SKIP_DIV_Rep_int_choice:
∀c∈C. Qf c = SKIP ∨ Qf c = DIV ==> !! :C .. Qf =F (if ∃c∈C. Qf c = SKIP then SKIP else DIV)