Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_law_rep_par(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | May 2005 | | June 2005 (modified) | | September 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | November 2005 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_F_law_rep_par = CSP_F_law_alpha_par + CSP_F_op_rep_par + CSP_T_law_rep_par: (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* Union (B ` A) = (UN x:A. B x) *) (* Inter (B ` A) = (INT x:A. B x) *) declare Union_image_eq [simp del] declare Inter_image_eq [simp del] (***************************************************************** 1. associativity of [||]:I 2. commutativity of [||]:I 3. 4. *****************************************************************) (***************************************************** replace an index set with another equal index set *****************************************************) (*------------------* | csp law | *------------------*) lemma cspF_Rep_parallel_index_eq_lm1: "[| inj_on f I1 ; ALL i:I1. PXf2 (f i) = PXf1 i |] ==> Union {Yf i Int insert Tick (Ev ` snd (PXf1 i)) |i. i : I1} = Union {Yf (inv_on I1 f i) Int insert Tick (Ev ` snd (PXf2 i)) |i. i : f ` I1}" apply (rule) (* => *) apply (rule, simp) apply (elim conjE exE) apply (rule_tac x="(Yf i) Int insert Tick (Ev ` snd (PXf2 (f i)))" in exI) apply (simp) apply (rule_tac x="f i" in exI) apply (simp add: inv_f_f_on) (* <= *) apply (rule, simp) apply (simp add: image_iff) apply (elim conjE exE bexE) apply (rule_tac x= "(Yf xb) Int insert Tick (Ev ` snd (PXf1 xb))" in exI) apply (simp) apply (simp add: inv_f_f_on) apply (rule_tac x="xb" in exI) apply (simp) done lemma cspF_Rep_parallel_index_eq_lm2: "ALL i:I1. PXf2 (f i) = PXf1 i ==> Union {Yf i Int insert Tick (Ev ` snd (PXf2 i)) |i. i : f ` I1} = Union {Yf (f i) Int insert Tick (Ev ` snd (PXf1 i)) |i. i : I1}" apply (rule) (* => *) apply (rule, simp) apply (simp add: image_iff) apply (elim conjE exE bexE) apply (simp) apply (rule_tac x="xa" in exI) apply (simp) apply (rule_tac x="xb" in exI) apply (simp) (* <= *) apply (rule, simp) apply (elim conjE exE) apply (rule_tac x="xa" in exI) apply (simp) apply (rule_tac x="f i" in exI) apply (simp) done (* main *) lemma cspF_Rep_parallel_index_eq: "[| finite I1 ; EX f. I2 = f ` I1 & inj_on f I1 & (ALL i:I1. PXf2 (f i) = PXf1 i) |] ==> [||]:I1 PXf1 =F [||]:I2 PXf2" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Rep_parallel_index_eq) apply (case_tac "I1 = {}", simp) apply (rule order_antisym) (* <= *) apply (rule) apply (elim conjE exE) apply (simp add: in_failures_Rep_parallel) apply (subgoal_tac "Union (snd ` PXf2 ` f ` I1) = Union (snd ` PXf1 ` I1)") apply (simp) apply (elim conjE exE) apply (rule_tac x="(%i. Yf (inv_on I1 f i))" in exI) apply (simp add: inv_f_f_on) apply (simp add: cspF_Rep_parallel_index_eq_lm1) apply (simp add: Union_index_fun) (* => *) apply (rule) apply (elim conjE exE) apply (simp add: in_failures_Rep_parallel) apply (subgoal_tac "Union (snd ` PXf2 ` f ` I1) = Union (snd ` PXf1 ` I1)") apply (simp) apply (elim conjE exE) apply (rule_tac x="(%i. Yf (f i))" in exI) apply (simp) apply (simp add: cspF_Rep_parallel_index_eq_lm2) apply (simp add: Union_index_fun) done (********************************************************* [||]:I PXf ==> [||] PXs *********************************************************) (*------------------* | csp law | *------------------*) lemma cspF_Index_to_Inductive_parallel: "[| finite I ; Is isListOf I |] ==> [||]:I PXf =F [||] (map PXf Is)" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Index_to_Inductive_parallel) apply (case_tac "I = {}", simp) apply (case_tac "map PXf Is = []") apply (simp) apply (rule order_antisym) (* <= *) apply (rule) apply (simp add: in_failures_Rep_parallel) apply (simp add: in_failures_Inductive_parallel_nth) apply (simp add: isListOf_set_eq) apply (elim conjE exE) apply (rule_tac x= "map Yf Is" in exI) apply (simp) apply (rule conjI) apply (rule in_failures_Rep_parallel_lm2, simp) apply (intro allI impI) apply (drule_tac x="Is ! i" in bspec) apply (simp add: isListOf_nth_in_index) apply (simp) (* => *) apply (rule) apply (simp add: in_failures_Rep_parallel) apply (simp add: in_failures_Inductive_parallel_nth) apply (simp add: isListOf_set_eq) apply (elim conjE exE) apply (rule_tac x= "(%i. (Ys!(THE n. (Is!n) = i & n<length Is)))" in exI) apply (rule conjI) apply (simp add: in_failures_Rep_parallel_lm1) apply (rule ballI) apply (erule isListOf_index_to_nthE) apply (drule_tac x="i" in bspec, simp) apply (elim conjE exE, simp) apply (drule_tac x="n" in spec, simp) apply (rotate_tac 4) apply (drule sym) apply (simp add: isListOf_THE_nth) done (************************************ | [||]:I PXf and SKIP | ************************************) lemma cspF_SKIP_Rep_parallel_right_lm1: "I ~= {} ==> insert Tick (Union {Yf i Int insert Tick (Ev ` snd (PXf i)) |i. i : I}) = Union {insert Tick (Yf i Int Ev ` snd (PXf i)) |i. i : I}" by (auto) (*------------------* | csp law | *------------------*) lemma cspF_SKIP_Rep_parallel_right: "finite I ==> (([||]:I PXf) |[Union (snd ` PXf ` I), {}]| SKIP) =F ([||]:I PXf)" apply (case_tac "I={}") apply (simp add: cspF_SKIP_Alpha_parallel) apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_SKIP_Rep_parallel_right) apply (rule order_antisym) (* => *) apply (rule) apply (simp add: in_failures_Alpha_parallel) apply (simp add: in_failures_Rep_parallel) apply (elim conjE exE) apply (case_tac "Tick ~: Z") apply (simp) apply (rule_tac x="Yf" in exI) apply (rule conjI) apply (subgoal_tac "Z Int {Tick} = {}") apply (simp (no_asm_simp)) apply (simp) apply (intro ballI) apply (drule_tac x="i" in bspec, simp) apply (subgoal_tac " snd (PXf i) <= Union (snd ` PXf ` I)") apply (simp add: rest_tr_of_rest_tr_subset) apply (force) apply (simp add: in_failures) apply (erule disjE) apply (simp add: Evset_def) apply (force) apply (rule_tac x="(%i. insert Tick (Yf i))" in exI) apply (simp) apply (subgoal_tac "Z Int {Tick} = {Tick}", simp) apply (simp add: cspF_SKIP_Rep_parallel_right_lm1) apply (intro ballI) apply (drule_tac x="i" in bspec, simp) apply (subgoal_tac " snd (PXf i) <= Union (snd ` PXf ` I)") apply (simp add: rest_tr_of_rest_tr_subset) apply (simp add: rest_tr_Tick_sett) apply (elim conjE exE) apply (simp) apply (rule proc_T2_T3) apply (simp) apply (simp) apply (force) apply (force) (* <= *) apply (rule) apply (simp add: in_failures_Alpha_parallel) apply (rule_tac x="X" in exI) apply (rule_tac x="{}" in exI) apply (simp) apply (simp add: in_failures) apply (simp add: rest_tr_empty) apply (simp add: in_failures_Rep_parallel) apply (elim conjE exE) apply (rule_tac x="Yf" in exI) apply (simp) apply (intro ballI) apply (drule_tac x="i" in bspec, simp) apply (subgoal_tac " snd (PXf i) <= Union (snd ` PXf ` I)") apply (simp add: rest_tr_of_rest_tr_subset) apply (force) done (************************************ | SKIP and [||]:I PXf | ************************************) (*------------------* | csp law | *------------------*) lemma cspF_SKIP_Rep_parallel_left: "finite I ==> (SKIP |[{}, Union (snd ` PXf ` I)]| ([||]:I PXf)) =F ([||]:I PXf)" apply (subgoal_tac "(SKIP |[{}, Union (snd ` PXf ` I)]| ([||]:I PXf)) =F (([||]:I PXf) |[Union (snd ` PXf ` I), {}]| SKIP)") apply (rule cspF_trans) apply (simp) apply (simp add: cspF_SKIP_Rep_parallel_right) apply (simp add: cspF_Alpha_parallel_commut) done (*** left and right ***) lemmas cspF_SKIP_Rep_parallel = cspF_SKIP_Rep_parallel_left cspF_SKIP_Rep_parallel_right (************************************ | associativity | ************************************) lemma cspF_Rep_parallel_ass_lm1: "Union {Yf i Int insert Tick (Ev ` snd (PXf i)) |i. i : I} Int insert Tick (Ev ` Union (snd ` PXf ` I)) = Union {Yf i Int insert Tick (Ev ` snd (PXf i)) |i. i : I}" by (auto) lemma cspF_Rep_parallel_ass_lm2: "I1 Int I2 = {} ==> Union {Yf1 i Int insert Tick (Ev ` snd (PXf i)) |i. i : I1} Un Union {Yf2 i Int insert Tick (Ev ` snd (PXf i)) |i. i : I2} = Union {(if i : I1 then Yf1 i else Yf2 i) Int insert Tick (Ev ` snd (PXf i)) |i. i : I1 | i : I2}" apply (rule) apply (rule) apply (simp) apply (elim disjE conjE exE) apply (rule_tac x="Yf1 i Int insert Tick (Ev ` snd (PXf i))" in exI, simp) apply (rule_tac x="i" in exI, simp) apply (rule_tac x="Yf2 i Int insert Tick (Ev ` snd (PXf i))" in exI, simp) apply (rule_tac x="i" in exI, simp) apply (force) apply (rule) apply (simp) apply (elim disjE conjE exE) apply (rule disjI1) apply (rule_tac x="Yf1 i Int insert Tick (Ev ` snd (PXf i))" in exI, simp) apply (rule_tac x="i" in exI, simp) apply (rule disjI2) apply (case_tac "i ~: I1") apply (rule_tac x="Yf2 i Int insert Tick (Ev ` snd (PXf i))" in exI, simp) apply (rule_tac x="i" in exI, simp) apply (force) done (*------------------* | csp law | *------------------*) lemma cspF_Rep_parallel_assoc: "[| I1 Int I2 = {} ; finite I1 ; finite I2 |] ==> [||]:(I1 Un I2) PXf =F [||]:I1 PXf |[Union (snd ` PXf ` I1), Union (snd ` PXf ` I2)]| [||]:I2 PXf" apply (case_tac "I1 = {}") apply (case_tac "I2 = {}") apply (rule cspF_sym) apply (simp add: cspF_SKIP_Alpha_parallel) apply (rule cspF_sym) apply (simp add: cspF_SKIP_Rep_parallel) apply (case_tac "I2 = {}") apply (rule cspF_sym) apply (simp add: cspF_SKIP_Rep_parallel) apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Rep_parallel_assoc) apply (rule order_antisym) (* => *) apply (rule) apply (simp add: in_failures_Alpha_parallel) apply (simp add: in_failures_Rep_parallel) apply (elim conjE exE) apply (rule_tac x="Union {Yf i Int insert Tick (Ev ` snd (PXf i)) |i. i : I1}" in exI) apply (rule_tac x="Union {Yf i Int insert Tick (Ev ` snd (PXf i)) |i. i : I2}" in exI) apply (simp add: Union_snd_Un) apply (rule conjI) apply (simp add: cspF_Rep_parallel_ass_lm1) apply (blast) apply (rule conjI) (* I1 *) apply (rule_tac x="Yf" in exI) apply (simp add: cspF_Rep_parallel_ass_lm1) apply (intro ballI) apply (drule_tac x="i" in bspec, simp) apply (subgoal_tac "snd (PXf i) <= Union (snd ` PXf ` I1)") apply (simp add: rest_tr_of_rest_tr_subset) apply (force) (* I2 *) apply (rule_tac x="Yf" in exI) apply (simp add: cspF_Rep_parallel_ass_lm1) apply (intro ballI) apply (drule_tac x="i" in bspec, simp) apply (subgoal_tac "snd (PXf i) <= Union (snd ` PXf ` I2)") apply (simp add: rest_tr_of_rest_tr_subset) apply (force) (* <= *) apply (rule) apply (simp add: in_failures_Alpha_parallel) apply (simp add: in_failures_Rep_parallel) apply (elim exE conjE) apply (simp add: Union_snd_Un) apply (rename_tac s X Y Z Yf1 Yf2) apply (rule_tac x="(%i. if i:I1 then Yf1 i else Yf2 i)" in exI) (* the necessity of the condition "I1 Int I2 = {}" *) apply (simp add: cspF_Rep_parallel_ass_lm2) apply (intro ballI) apply (simp) apply (erule disjE) apply (drule_tac x="i" in bspec, simp, simp) apply (subgoal_tac "snd (PXf i) <= Union (snd ` PXf ` I1)") apply (simp add: rest_tr_of_rest_tr_subset) apply (force) apply (drule_tac x="i" in bspec, simp) apply (case_tac "i ~: I1") apply (subgoal_tac "snd (PXf i) <= Union (snd ` PXf ` I2)") apply (simp add: rest_tr_of_rest_tr_subset) apply (force) apply (blast) done (************************************ | induct | ************************************) (*------------------* | csp law | | (derivable) | *------------------*) lemma cspF_Rep_parallel_induct: "[| finite I ; i ~: I |] ==> [||]:(insert i I) PXf =F fst (PXf i) |[snd (PXf i), Union (snd ` PXf ` I)]| [||]:I PXf" apply (insert cspF_Rep_parallel_assoc[of "{i}" I PXf]) apply (simp add: Rep_parallel_one) apply (rule cspF_trans) apply (simp) apply (insert cspF_Alpha_parallel_assoc [of "fst (PXf i)" "snd (PXf i)" "{}" "SKIP" "Union (snd ` PXf ` I)" "[||]:I PXf"]) apply (rule cspF_trans) apply (simp) apply (rule cspF_decompo_Alpha_parallel) apply (simp_all) apply (simp add: cspF_SKIP_Rep_parallel) done (****************** to add them again ******************) declare Union_image_eq [simp] declare Inter_image_eq [simp] end
lemma cspF_Rep_parallel_index_eq_lm1:
[| inj_on f I1.0; ∀i∈I1.0. PXf2.0 (f i) = PXf1.0 i |] ==> Union {Yf i ∩ insert Tick (Ev ` snd (PXf1.0 i)) |i. i ∈ I1.0} = Union {Yf (inv_on I1.0 f i) ∩ insert Tick (Ev ` snd (PXf2.0 i)) |i. i ∈ f ` I1.0}
lemma cspF_Rep_parallel_index_eq_lm2:
∀i∈I1.0. PXf2.0 (f i) = PXf1.0 i ==> Union {Yf i ∩ insert Tick (Ev ` snd (PXf2.0 i)) |i. i ∈ f ` I1.0} = Union {Yf (f i) ∩ insert Tick (Ev ` snd (PXf1.0 i)) |i. i ∈ I1.0}
lemma cspF_Rep_parallel_index_eq:
[| finite I1.0; ∃f. I2.0 = f ` I1.0 ∧ inj_on f I1.0 ∧ (∀i∈I1.0. PXf2.0 (f i) = PXf1.0 i) |] ==> [||]:I1.0 PXf1.0 =F [||]:I2.0 PXf2.0
lemma cspF_Index_to_Inductive_parallel:
[| finite I; Is isListOf I |] ==> [||]:I PXf =F [||] map PXf Is
lemma cspF_SKIP_Rep_parallel_right_lm1:
I ≠ {} ==> insert Tick (Union {Yf i ∩ insert Tick (Ev ` snd (PXf i)) |i. i ∈ I}) = Union {insert Tick (Yf i ∩ Ev ` snd (PXf i)) |i. i ∈ I}
lemma cspF_SKIP_Rep_parallel_right:
finite I ==> [||]:I PXf |[Union (snd ` PXf ` I),{}]| SKIP =F [||]:I PXf
lemma cspF_SKIP_Rep_parallel_left:
finite I ==> SKIP |[{},Union (snd ` PXf ` I)]| [||]:I PXf =F [||]:I PXf
lemmas cspF_SKIP_Rep_parallel:
finite I ==> SKIP |[{},Union (snd ` PXf ` I)]| [||]:I PXf =F [||]:I PXf
finite I ==> [||]:I PXf |[Union (snd ` PXf ` I),{}]| SKIP =F [||]:I PXf
lemmas cspF_SKIP_Rep_parallel:
finite I ==> SKIP |[{},Union (snd ` PXf ` I)]| [||]:I PXf =F [||]:I PXf
finite I ==> [||]:I PXf |[Union (snd ` PXf ` I),{}]| SKIP =F [||]:I PXf
lemma cspF_Rep_parallel_ass_lm1:
Union {Yf i ∩ insert Tick (Ev ` snd (PXf i)) |i. i ∈ I} ∩ insert Tick (Ev ` Union (snd ` PXf ` I)) = Union {Yf i ∩ insert Tick (Ev ` snd (PXf i)) |i. i ∈ I}
lemma cspF_Rep_parallel_ass_lm2:
I1.0 ∩ I2.0 = {} ==> Union {Yf1.0 i ∩ insert Tick (Ev ` snd (PXf i)) |i. i ∈ I1.0} ∪ Union {Yf2.0 i ∩ insert Tick (Ev ` snd (PXf i)) |i. i ∈ I2.0} = Union {(if i ∈ I1.0 then Yf1.0 i else Yf2.0 i) ∩ insert Tick (Ev ` snd (PXf i)) | i. i ∈ I1.0 ∨ i ∈ I2.0}
lemma cspF_Rep_parallel_assoc:
[| I1.0 ∩ I2.0 = {}; finite I1.0; finite I2.0 |] ==> [||]:(I1.0 ∪ I2.0) PXf =F [||]:I1.0 PXf |[Union (snd ` PXf ` I1.0),Union (snd ` PXf ` I2.0)]| [||]:I2.0 PXf
lemma cspF_Rep_parallel_induct:
[| finite I; i ∉ I |] ==> [||]:insert i I PXf =F fst (PXf i) |[snd (PXf i),Union (snd ` PXf ` I)]| [||]:I PXf