Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_law_DIV (*-------------------------------------------*
| CSP-Prover on Isabelle2005 |
| December 2005 |
| April 2006 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_F_law_DIV = CSP_F_law_basic + CSP_T_law_DIV:
(*****************************************************************
1. DIV |[X]| DIV
2. DIV |[X]| P
3. P |[X]| DIV
4. DIV -- X
5. DIV [[r]]
6. DIV ;; P
7. P ;; DIV
8. DIV |. n
*****************************************************************)
(*********************************************************
DIV |[X]| DIV
*********************************************************)
lemma cspF_DIV_Parallel:
"DIV |[X]| DIV =F DIV"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_DIV_Parallel)
apply (rule order_antisym)
apply (rule, simp add: in_failures)+
done
(*********************************************************
DIV |[X]| P
*********************************************************)
lemma cspF_DIV_Parallel_step_l:
"DIV |[X]| (? :Y -> Qf) =F (? x:(Y-X) -> (DIV |[X]| Qf x)) [+] DIV"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_DIV_Parallel_step_l)
apply (rule order_antisym)
(* => *)
apply (rule)
apply (simp add: in_failures)
(* <= *)
apply (rule)
apply (simp add: in_failures)
apply (elim conjE exE disjE)
apply (simp_all add: in_traces)
done
lemma cspF_DIV_Parallel_step_r:
"(? :Y -> Qf) |[X]| DIV =F (? x:(Y-X) -> (Qf x |[X]| DIV)) [+] DIV"
apply (rule cspF_rw_left)
apply (rule cspF_commut)
apply (rule cspF_rw_right)
apply (rule cspF_decompo)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_commut)
apply (rule cspF_reflex)
apply (rule cspF_DIV_Parallel_step_l)
done
lemmas cspF_DIV_Parallel_step =
cspF_DIV_Parallel_step_l cspF_DIV_Parallel_step_r
(*********************************************************
DIV and Parallel
*********************************************************)
lemma cspF_DIV_Parallel_Ext_choice_DIV_l:
"(P [+] DIV) |[X]| DIV =F (P |[X]| DIV)"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_DIV_Parallel_Ext_choice_DIV_l)
apply (rule order_antisym)
(* => *)
apply (rule, simp add: in_failures)
(* <= *)
apply (rule, simp add: in_failures)
done
lemma cspF_DIV_Parallel_Ext_choice_DIV_r:
"DIV |[X]| (P [+] DIV) =F (DIV |[X]| P)"
apply (rule cspF_rw_left)
apply (rule cspF_commut)
apply (rule cspF_rw_left)
apply (rule cspF_DIV_Parallel_Ext_choice_DIV_l)
apply (rule cspF_commut)
done
lemmas cspF_DIV_Parallel_Ext_choice_DIV =
cspF_DIV_Parallel_Ext_choice_DIV_l
cspF_DIV_Parallel_Ext_choice_DIV_r
(*********************************************************
DIV -- X
*********************************************************)
lemma cspF_DIV_Hiding_Id:
"DIV -- X =F DIV"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_DIV_Hiding_Id)
apply (rule order_antisym)
(* => *)
apply (rule)
apply (simp add: in_failures)
(* <= *)
apply (rule)
apply (simp add: in_failures)
done
(*** div-hide-step ***)
lemma cspF_DIV_Hiding_step:
"((? :Y -> Pf) [+] DIV) -- X =F
(((? x:(Y-X) -> (Pf x -- X)) [+] DIV) |~| (! x:(Y Int X) .. (Pf x -- X)))"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_DIV_Hiding_step)
apply (rule order_antisym)
(* => *)
apply (rule, simp add: in_failures)
apply (elim conjE exE disjE)
apply (simp_all)
apply (simp_all add: in_traces)
apply (case_tac "a : X")
apply (simp)
apply (blast)
apply (force)
(* <= *)
apply (rule)
apply (simp add: in_failures)
apply (elim conjE exE bexE disjE)
apply (simp_all)
apply (rule_tac x="<Ev a> ^^ sb" in exI)
apply (simp)
apply (simp add: in_traces)
apply (rule_tac x="<>" in exI)
apply (simp add: Evset_def)
apply (fast)
apply (rule_tac x="<Ev a> ^^ sa" in exI)
apply (simp)
done
(*********************************************************
DIV [[r]]
*********************************************************)
lemma cspF_DIV_Renaming_Id:
"DIV [[r]] =F DIV"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_DIV_Renaming_Id)
apply (rule order_antisym)
(* => *)
apply (rule)
apply (simp add: in_failures)
(* <= *)
apply (rule)
apply (simp add: in_failures)
done
(*********************************************************
DIV ;; P
*********************************************************)
lemma cspF_DIV_Seq_compo: "DIV ;; P =F DIV"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_DIV_Seq_compo)
apply (rule order_antisym)
(* => *)
apply (rule, simp add: in_failures)
apply (elim conjE exE)
apply (simp add: in_traces)
(* <= *)
apply (rule, simp add: in_failures)
done
(*********************************************************
DIV and Sequential composition
*********************************************************)
lemma cspF_DIV_Seq_compo_step:
"((? :X -> Pf) [> DIV) ;; Q =F (? x:X -> (Pf x ;; Q)) [> DIV"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_DIV_Seq_compo_step)
apply (rule order_antisym)
(* => *)
apply (rule, simp add: in_failures in_traces)
apply (elim conjE exE disjE)
apply (simp_all)
apply (insert trace_nil_or_Tick_or_Ev)
apply (drule_tac x="sa" in spec)
apply (elim disjE conjE exE)
apply (simp_all)
apply (simp add: appt_assoc)
apply (rule disjI2)
apply (rule_tac x="sc" in exI)
apply (rule_tac x="t" in exI)
apply (simp)
(* <= *)
apply (rule, simp add: in_failures in_traces)
apply (elim conjE exE disjE)
apply (simp_all)
apply (rule disjI2)
apply (rule_tac x="<Ev a> ^^ sb" in exI)
apply (rule_tac x="t" in exI)
apply (simp add: appt_assoc)
done
(*********************************************************
DIV |. n
*********************************************************)
lemma cspF_DIV_Depth_rest:
"DIV |. n =F DIV"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_DIV_Depth_rest)
apply (rule order_antisym)
(* => *)
apply (rule)
apply (simp add: in_failures)
(* <= *)
apply (rule)
apply (simp add: in_failures)
done
(*********************************************************
cspF_DIV
*********************************************************)
lemmas cspF_DIV =
cspF_DIV_Parallel
cspF_DIV_Parallel_step
cspF_DIV_Parallel_Ext_choice_DIV
cspF_DIV_Hiding_Id
cspF_DIV_Hiding_step
cspF_DIV_Renaming_Id
cspF_DIV_Seq_compo
cspF_DIV_Seq_compo_step
cspF_DIV_Depth_rest
(*********************************************************
P [+] DIV
*********************************************************)
lemma cspF_Ext_choice_DIV_resolve: "P [+] DIV =F P [> DIV"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_Ext_choice_DIV_resolve)
apply (rule order_antisym)
(* => *)
apply (rule, simp add: in_failures)
apply (simp add: in_traces)
apply (force)
(* <= *)
apply (rule, simp add: in_traces in_failures)
apply (force)
done
end
lemma cspF_DIV_Parallel:
DIV |[X]| DIV =F DIV
lemma cspF_DIV_Parallel_step_l:
DIV |[X]| ? :Y -> Qf =F ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
lemma cspF_DIV_Parallel_step_r:
? :Y -> Qf |[X]| DIV =F ? x:(Y - X) -> (Qf x |[X]| DIV) [+] DIV
lemmas cspF_DIV_Parallel_step:
DIV |[X]| ? :Y -> Qf =F ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
? :Y -> Qf |[X]| DIV =F ? x:(Y - X) -> (Qf x |[X]| DIV) [+] DIV
lemmas cspF_DIV_Parallel_step:
DIV |[X]| ? :Y -> Qf =F ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
? :Y -> Qf |[X]| DIV =F ? x:(Y - X) -> (Qf x |[X]| DIV) [+] DIV
lemma cspF_DIV_Parallel_Ext_choice_DIV_l:
(P [+] DIV) |[X]| DIV =F P |[X]| DIV
lemma cspF_DIV_Parallel_Ext_choice_DIV_r:
DIV |[X]| (P [+] DIV) =F DIV |[X]| P
lemmas cspF_DIV_Parallel_Ext_choice_DIV:
(P [+] DIV) |[X]| DIV =F P |[X]| DIV
DIV |[X]| (P [+] DIV) =F DIV |[X]| P
lemmas cspF_DIV_Parallel_Ext_choice_DIV:
(P [+] DIV) |[X]| DIV =F P |[X]| DIV
DIV |[X]| (P [+] DIV) =F DIV |[X]| P
lemma cspF_DIV_Hiding_Id:
DIV -- X =F DIV
lemma cspF_DIV_Hiding_step:
(? :Y -> Pf [+] DIV) -- X =F ? x:(Y - X) -> Pf x -- X [+] DIV |~| ! x:(Y ∩ X) .. Pf x -- X
lemma cspF_DIV_Renaming_Id:
DIV [[r]] =F DIV
lemma cspF_DIV_Seq_compo:
DIV ;; P =F DIV
lemma cspF_DIV_Seq_compo_step:
(? :X -> Pf [> DIV) ;; Q =F ? x:X -> (Pf x ;; Q) [> DIV
lemma cspF_DIV_Depth_rest:
DIV |. n =F DIV
lemmas cspF_DIV:
DIV |[X]| DIV =F DIV
DIV |[X]| ? :Y -> Qf =F ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
? :Y -> Qf |[X]| DIV =F ? x:(Y - X) -> (Qf x |[X]| DIV) [+] DIV
(P [+] DIV) |[X]| DIV =F P |[X]| DIV
DIV |[X]| (P [+] DIV) =F DIV |[X]| P
DIV -- X =F DIV
(? :Y -> Pf [+] DIV) -- X =F ? x:(Y - X) -> Pf x -- X [+] DIV |~| ! x:(Y ∩ X) .. Pf x -- X
DIV [[r]] =F DIV
DIV ;; P =F DIV
(? :X -> Pf [> DIV) ;; Q =F ? x:X -> (Pf x ;; Q) [> DIV
DIV |. n =F DIV
lemmas cspF_DIV:
DIV |[X]| DIV =F DIV
DIV |[X]| ? :Y -> Qf =F ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
? :Y -> Qf |[X]| DIV =F ? x:(Y - X) -> (Qf x |[X]| DIV) [+] DIV
(P [+] DIV) |[X]| DIV =F P |[X]| DIV
DIV |[X]| (P [+] DIV) =F DIV |[X]| P
DIV -- X =F DIV
(? :Y -> Pf [+] DIV) -- X =F ? x:(Y - X) -> Pf x -- X [+] DIV |~| ! x:(Y ∩ X) .. Pf x -- X
DIV [[r]] =F DIV
DIV ;; P =F DIV
(? :X -> Pf [> DIV) ;; Q =F ? x:X -> (Pf x ;; Q) [> DIV
DIV |. n =F DIV
lemma cspF_Ext_choice_DIV_resolve:
P [+] DIV =F P [> DIV