Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_law_basic(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | June 2005 (modified) | | September 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | January 2006 (modified) | | April 2006 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_F_law_basic = CSP_F_law_decompo + CSP_T_law_basic: (***************************************************************** 1. Commutativity 2. Associativity 3. Idempotence 4. Left Commutativity 5. IF *****************************************************************) (********************************************************* IF bool *********************************************************) (*------------------* | csp law | *------------------*) lemma cspF_IF_split: "IF b THEN P ELSE Q =F (if b then P else Q)" apply (simp add: cspF_semantics) apply (simp add: traces_def) apply (simp add: failures_def) done lemma cspF_IF_True: "IF True THEN P ELSE Q =F P" apply (rule cspF_rw_left) apply (rule cspF_IF_split) by (simp) lemma cspF_IF_False: "IF False THEN P ELSE Q =F Q" apply (rule cspF_rw_left) apply (rule cspF_IF_split) by (simp) lemmas cspF_IF = cspF_IF_True cspF_IF_False (*-----------------------------------* | Idempotence | *-----------------------------------*) lemma cspF_Ext_choice_idem: "P [+] P =F P" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Ext_choice_idem) apply (rule order_antisym) apply (rule, simp add: in_traces in_failures) apply (elim conjE disjE) apply (simp_all) apply (rule proc_F2_F4) apply (simp_all) apply (rule, simp add: in_traces in_failures) done lemma cspF_Int_choice_idem: "P |~| P =F P" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Int_choice_idem) apply (rule order_antisym) apply (rule, simp add: in_failures)+ done (*------------------* | csp law | *------------------*) lemmas cspF_idem = cspF_Ext_choice_idem cspF_Int_choice_idem (*-----------------------------------* | Commutativity | *-----------------------------------*) (********************************************************* Ext choice *********************************************************) lemma cspF_Ext_choice_commut: "P [+] Q =F Q [+] P" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Ext_choice_commut) apply (rule order_antisym) apply (rule, simp add: in_failures, fast)+ done (********************************************************* Int choice *********************************************************) lemma cspF_Int_choice_commut: "P |~| Q =F Q |~| P" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Int_choice_commut) apply (rule order_antisym) apply (rule, simp add: in_failures, fast)+ done (********************************************************* Parallel *********************************************************) lemma cspF_Parallel_commut: "P |[X]| Q =F Q |[X]| P" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Parallel_commut) apply (rule order_antisym) apply (rule, simp add: in_failures) apply (elim conjE exE) apply (rule_tac x="Z" in exI) apply (rule_tac x="Y" in exI, simp) apply (rule conjI, fast) apply (rule_tac x="t" in exI) apply (rule_tac x="sa" in exI) apply (simp add: par_tr_sym) apply (rule, simp add: in_failures) apply (elim conjE exE) apply (rule_tac x="Z" in exI) apply (rule_tac x="Y" in exI, simp) apply (rule conjI, fast) apply (rule_tac x="t" in exI) apply (rule_tac x="sa" in exI) apply (simp add: par_tr_sym) done (*------------------* | csp law | *------------------*) lemmas cspF_commut = cspF_Ext_choice_commut cspF_Int_choice_commut cspF_Parallel_commut (*-----------------------------------* | Associativity | *-----------------------------------*) lemma cspF_Ext_choice_assoc: "P [+] (Q [+] R) =F (P [+] Q) [+] R" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Ext_choice_assoc) apply (rule order_antisym) apply (rule, simp add: in_failures in_traces) apply (force) apply (rule, simp add: in_failures in_traces) apply (force) done lemma cspF_Ext_choice_assoc_sym: "(P [+] Q) [+] R =F P [+] (Q [+] R)" apply (rule cspF_sym) apply (simp add: cspF_Ext_choice_assoc) done lemma cspF_Int_choice_assoc: "P |~| (Q |~| R) =F (P |~| Q) |~| R" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Int_choice_assoc) apply (rule order_antisym) apply (rule, simp add: in_failures)+ done lemma cspF_Int_choice_assoc_sym: "(P |~| Q) |~| R =F P |~| (Q |~| R)" apply (rule cspF_sym) apply (simp add: cspF_Int_choice_assoc) done (*------------------* | csp law | *------------------*) lemmas cspF_assoc = cspF_Ext_choice_assoc cspF_Int_choice_assoc lemmas cspF_assoc_sym = cspF_Ext_choice_assoc_sym cspF_Int_choice_assoc_sym (*-----------------------------------* | Left Commutativity | *-----------------------------------*) lemma cspF_Ext_choice_left_commut: "P [+] (Q [+] R) =F Q [+] (P [+] R)" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Ext_choice_left_commut) apply (rule order_antisym) apply (rule, simp add: in_failures in_traces) apply (force) apply (rule, simp add: in_failures in_traces) apply (force) done lemma cspF_Int_choice_left_commut: "P |~| (Q |~| R) =F Q |~| (P |~| R)" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Int_choice_left_commut) apply (rule order_antisym) apply (rule, simp add: in_failures)+ done lemmas cspF_left_commut = cspF_Ext_choice_left_commut cspF_Int_choice_left_commut (*-----------------------------------* | Unit | *-----------------------------------*) (*** STOP [+] P ***) lemma cspF_Ext_choice_unit_l: "STOP [+] P =F P" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Ext_choice_unit_l) apply (rule order_antisym) apply (rule, simp add: in_traces in_failures) apply (elim conjE disjE) apply (simp_all) apply (rule proc_F2_F4) apply (simp_all) apply (rule, simp add: in_failures) done lemma cspF_Ext_choice_unit_r: "P [+] STOP =F P" apply (rule cspF_rw_left) apply (rule cspF_Ext_choice_commut) apply (simp add: cspF_Ext_choice_unit_l) done lemmas cspF_Ext_choice_unit = cspF_Ext_choice_unit_l cspF_Ext_choice_unit_r lemma cspF_Int_choice_unit_l: "DIV |~| P =F P" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Int_choice_unit_l) apply (rule order_antisym) apply (rule, simp add: in_failures) apply (rule, simp add: in_failures) done lemma cspF_Int_choice_unit_r: "P |~| DIV =F P" apply (rule cspF_rw_left) apply (rule cspF_Int_choice_commut) apply (simp add: cspF_Int_choice_unit_l) done lemmas cspF_Int_choice_unit = cspF_Int_choice_unit_l cspF_Int_choice_unit_r lemmas cspF_unit = cspF_Ext_choice_unit cspF_Int_choice_unit (*-----------------------------------* | !!-empty | *-----------------------------------*) lemma cspF_Rep_int_choice0_DIV: "!! :{} .. Pf =F DIV" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Rep_int_choice_DIV) apply (simp add: failures_def) apply (simp add: empF_def) done lemma cspF_Rep_int_choice_fun_DIV: "inj f ==> !!<f> :{} .. Pf =F DIV" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Rep_int_choice_fun_DIV) apply (simp add: failures_def) apply (simp add: empF_def) done lemma cspF_Rep_int_choice2_DIV: "!set :{} .. Pf =F DIV" by (simp add: cspF_Rep_int_choice_fun_DIV) lemma cspF_Rep_int_choice3_DIV: "!nat :{} .. Pf =F DIV" by (simp add: cspF_Rep_int_choice_fun_DIV) lemma cspF_Rep_int_choice1_DIV: "! :{} .. Pf =F DIV" apply (simp add: Rep_int_choice_com_def) apply (simp add: cspF_Rep_int_choice2_DIV) done lemmas cspF_Rep_int_choice_DIV = cspF_Rep_int_choice0_DIV cspF_Rep_int_choice1_DIV cspF_Rep_int_choice2_DIV cspF_Rep_int_choice3_DIV lemmas cspF_Rep_int_choice_DIV_sym = cspF_Rep_int_choice0_DIV[THEN cspF_sym] lemmas cspF_Rep_int_choice_empty = cspF_Rep_int_choice_DIV (*-----------------------------------* | !!-unit | *-----------------------------------*) lemma cspF_Rep_int_choice_unit0: "C ~= {} ==> !! c:C .. P =F P" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Rep_int_choice_unit0) apply (rule order_antisym) apply (rule, simp add: in_failures) apply (rule, simp add: in_failures) apply (force) done lemma cspF_Rep_int_choice_unit_fun: "X ~= {} ==> !!<f> x:X .. P =F P" apply (simp add: Rep_int_choice_fun_def) apply (simp add: cspF_Rep_int_choice_unit0) done lemma cspF_Rep_int_choice_unit_com: "X ~= {} ==> ! x:X .. P =F P" apply (simp add: Rep_int_choice_com_def) apply (simp add: cspF_Rep_int_choice_unit_fun) done lemmas cspF_Rep_int_choice_unit = cspF_Rep_int_choice_unit0 cspF_Rep_int_choice_unit_fun cspF_Rep_int_choice_unit_com (*-----------------------------------* | !!-const | *-----------------------------------*) (* const *) lemma cspF_Rep_int_choice_const0: "[| C ~= {} ; ALL c:C. Pf c = P |] ==> !! :C .. Pf =F P" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Rep_int_choice_const0) apply (rule order_antisym) apply (rule, simp add: in_failures) apply (rule, simp add: in_failures) apply (force) done lemma cspF_Rep_int_choice_const_fun: "[| inj f ; X ~= {} ; ALL x:X. Pf x = P |] ==> !!<f> :X .. Pf =F P" apply (simp add: Rep_int_choice_fun_def) apply (rule cspF_Rep_int_choice_const0) apply (simp) apply (intro ballI) apply (simp add: image_iff) apply (erule bexE) apply (simp) done lemma cspF_Rep_int_choice_const_com: "[| X ~= {} ; ALL x:X. Pf x = P |] ==> ! :X .. Pf =F P" apply (simp add: Rep_int_choice_com_def) apply (rule cspF_Rep_int_choice_const_fun) apply (auto) done lemmas cspF_Rep_int_choice_const = cspF_Rep_int_choice_const0 cspF_Rep_int_choice_const_fun cspF_Rep_int_choice_const_com (*-----------------------------------* | |~|-!!-union | *-----------------------------------*) lemma cspF_Int_Rep_int_choice_union: "(!! :C1 .. P1f) |~| (!! :C2 .. P2f) =F (!! c:(C1 Un C2) .. IF (c : C1 & c : C2) THEN (P1f c |~| P2f c) ELSE IF (c : C1) THEN P1f c ELSE P2f c)" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Int_Rep_int_choice_union) apply (rule order_antisym) apply (rule) apply (simp add: in_failures) apply (elim conjE bexE disjE) apply (rule_tac x="c" in bexI) apply (simp) apply (simp) apply (rule_tac x="c" in bexI) apply (simp) apply (simp) (* => *) apply (rule) apply (simp add: in_failures) apply (elim conjE exE bexE) apply (simp_all) apply (elim disjE) apply (simp_all) apply (case_tac "c : C2") apply (simp add: in_failures) apply (force) apply (simp add: in_failures) apply (force) apply (case_tac "c : C1") apply (simp add: in_failures) apply (force) apply (simp add: in_failures) apply (force) done (*-----------------------------------* | !!-union-|~| | *-----------------------------------*) lemma cspF_Rep_int_choice_union_Int0: "(!! :(C1 Un C2) .. Pf) =F (!! c:C1 .. Pf c) |~| (!! c:C2 .. Pf c)" apply (rule cspF_rw_right) apply (rule cspF_Int_Rep_int_choice_union) apply (rule cspF_decompo) apply (simp) apply (rule cspF_rw_right) apply (rule cspF_IF_split) apply (simp) apply (simp add: cspF_idem[THEN cspF_sym]) apply (intro impI) apply (rule cspF_rw_right) apply (rule cspF_IF_split) apply (simp) done lemma cspF_Rep_int_choice_union_Int_fun: "(!!<f> :(X1 Un X2) .. Pf) =F (!!<f> x:X1 .. Pf x) |~| (!!<f> x:X2 .. Pf x)" apply (simp add: Rep_int_choice_fun_def) apply (rule cspF_rw_right) apply (rule cspF_Rep_int_choice_union_Int0[THEN cspF_sym]) apply (rule cspF_decompo) apply (auto) done lemma cspF_Rep_int_choice_union_Int_com: "(! :(X1 Un X2) .. Pf) =F (! x:X1 .. Pf x) |~| (! x:X2 .. Pf x)" apply (simp add: Rep_int_choice_com_def) apply (rule cspF_rw_right) apply (rule cspF_Rep_int_choice_union_Int_fun[THEN cspF_sym]) apply (rule cspF_decompo) apply (auto) done lemmas cspF_Rep_int_choice_union_Int = cspF_Rep_int_choice_union_Int0 cspF_Rep_int_choice_union_Int_fun cspF_Rep_int_choice_union_Int_com (********************************************************* Depth_rest *********************************************************) (*------------------* | csp law | *------------------*) lemma cspF_Depth_rest_Zero: "P |. 0 =F DIV" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Depth_rest_Zero) apply (rule order_antisym) (* => *) apply (rule) apply (simp add: in_failures) apply (force) (* <= *) apply (rule) apply (simp add: in_failures) done lemma cspF_Depth_rest_min: "P |. n |. m =F P |. min n m" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Depth_rest_min) apply (simp add: failures.simps) apply (simp add: min_rs) done lemma cspF_Depth_rest_congE: "[| P =F Q ; ALL m. P |. m =F Q |. m ==> S |] ==> S" apply (simp add: cspF_semantics) apply (simp add: traces.simps) apply (simp add: failures.simps) done lemma cspF_Depth_rest_n: "P |. n |. n =F P |. n" apply (rule cspF_rw_left) apply (rule cspF_Depth_rest_min) apply (simp) done (*------------------* | !nat-rest | *------------------*) lemma cspF_nat_Depth_rest_UNIV: "P =F !nat n .. (P |. n)" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_nat_Depth_rest_UNIV) apply (rule order_antisym) (* <= *) apply (rule) apply (simp add: in_failures) apply (case_tac "noTick s") apply (rule_tac x="Suc (lengtht s)" in exI) apply (simp) apply (rule_tac x="lengtht s" in exI) apply (simp) apply (rule_tac x="(butlastt s)" in exI) apply (simp add: Tick_decompo) apply (simp add: noTick_butlast) (* => *) apply (rule) apply (simp add: in_failures) done lemma cspF_nat_Depth_rest_lengthset: "P =F !nat n:(lengthset P) .. (P |. n)" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_nat_Depth_rest_lengthset) apply (rule order_antisym) (* <= *) apply (rule) apply (simp add: in_failures) apply (case_tac "noTick s") apply (rule_tac x="Suc (lengtht s)" in bexI) apply (simp) apply (simp add: lengthset_def) apply (rule_tac x="s" in exI) apply (simp add: proc_T2) apply (rule_tac x="lengtht s" in bexI) apply (simp) apply (rule_tac x="(butlastt s)" in exI) apply (simp add: Tick_decompo) apply (simp add: noTick_butlast) apply (simp add: lengthset_def) apply (rule_tac x="s" in exI) apply (simp add: proc_T2) (* => *) apply (rule) apply (simp add: in_failures) done lemmas cspF_nat_Depth_rest = cspF_nat_Depth_rest_UNIV cspF_nat_Depth_rest_lengthset (*------------------* | ?-partial | *------------------*) lemma cspF_Ext_pre_choice_partial: "? :X -> Pf =F ? x:X -> (IF (x:X) THEN Pf x ELSE DIV)" apply (rule cspF_decompo) apply (simp_all) apply (rule cspF_rw_right) apply (rule cspF_IF) apply (simp) done (*------------------* | !!-partial | *------------------*) lemma cspF_Rep_int_choice_partial0: "!! :C .. Pf =F !! c:C .. (IF (c:C) THEN Pf c ELSE DIV)" apply (rule cspF_decompo) apply (simp_all) apply (rule cspF_rw_right) apply (rule cspF_IF) apply (simp) done lemma cspF_Rep_int_choice_partial_fun: "inj f ==> !!<f> :X .. Pf =F !!<f> x:X .. (IF (x:X) THEN Pf x ELSE DIV)" apply (simp add: Rep_int_choice_fun_def) apply (rule cspF_rw_left) apply (rule cspF_Rep_int_choice_partial0) apply (rule cspF_decompo) apply (simp) apply (rule cspF_decompo) apply (auto) done lemma cspF_Rep_int_choice_partial_com: "! :X .. Pf =F ! x:X .. (IF (x:X) THEN Pf x ELSE DIV)" apply (simp add: Rep_int_choice_com_def) apply (rule cspF_rw_left) apply (rule cspF_Rep_int_choice_partial_fun) apply (simp) apply (rule cspF_decompo) apply (simp) apply (rule cspF_decompo) apply (auto) done lemmas cspF_Rep_int_choice_partial = cspF_Rep_int_choice_partial0 cspF_Rep_int_choice_partial_fun cspF_Rep_int_choice_partial_com end
lemma cspF_IF_split:
IF b THEN P ELSE Q =F (if b then P else Q)
lemma cspF_IF_True:
IF True THEN P ELSE Q =F P
lemma cspF_IF_False:
IF False THEN P ELSE Q =F Q
lemmas cspF_IF:
IF True THEN P ELSE Q =F P
IF False THEN P ELSE Q =F Q
lemmas cspF_IF:
IF True THEN P ELSE Q =F P
IF False THEN P ELSE Q =F Q
lemma cspF_Ext_choice_idem:
P [+] P =F P
lemma cspF_Int_choice_idem:
P |~| P =F P
lemmas cspF_idem:
P [+] P =F P
P |~| P =F P
lemmas cspF_idem:
P [+] P =F P
P |~| P =F P
lemma cspF_Ext_choice_commut:
P [+] Q =F Q [+] P
lemma cspF_Int_choice_commut:
P |~| Q =F Q |~| P
lemma cspF_Parallel_commut:
P |[X]| Q =F Q |[X]| P
lemmas cspF_commut:
P [+] Q =F Q [+] P
P |~| Q =F Q |~| P
P |[X]| Q =F Q |[X]| P
lemmas cspF_commut:
P [+] Q =F Q [+] P
P |~| Q =F Q |~| P
P |[X]| Q =F Q |[X]| P
lemma cspF_Ext_choice_assoc:
P [+] (Q [+] R) =F P [+] Q [+] R
lemma cspF_Ext_choice_assoc_sym:
P [+] Q [+] R =F P [+] (Q [+] R)
lemma cspF_Int_choice_assoc:
P |~| (Q |~| R) =F P |~| Q |~| R
lemma cspF_Int_choice_assoc_sym:
P |~| Q |~| R =F P |~| (Q |~| R)
lemmas cspF_assoc:
P [+] (Q [+] R) =F P [+] Q [+] R
P |~| (Q |~| R) =F P |~| Q |~| R
lemmas cspF_assoc:
P [+] (Q [+] R) =F P [+] Q [+] R
P |~| (Q |~| R) =F P |~| Q |~| R
lemmas cspF_assoc_sym:
P [+] Q [+] R =F P [+] (Q [+] R)
P |~| Q |~| R =F P |~| (Q |~| R)
lemmas cspF_assoc_sym:
P [+] Q [+] R =F P [+] (Q [+] R)
P |~| Q |~| R =F P |~| (Q |~| R)
lemma cspF_Ext_choice_left_commut:
P [+] (Q [+] R) =F Q [+] (P [+] R)
lemma cspF_Int_choice_left_commut:
P |~| (Q |~| R) =F Q |~| (P |~| R)
lemmas cspF_left_commut:
P [+] (Q [+] R) =F Q [+] (P [+] R)
P |~| (Q |~| R) =F Q |~| (P |~| R)
lemmas cspF_left_commut:
P [+] (Q [+] R) =F Q [+] (P [+] R)
P |~| (Q |~| R) =F Q |~| (P |~| R)
lemma cspF_Ext_choice_unit_l:
STOP [+] P =F P
lemma cspF_Ext_choice_unit_r:
P [+] STOP =F P
lemmas cspF_Ext_choice_unit:
STOP [+] P =F P
P [+] STOP =F P
lemmas cspF_Ext_choice_unit:
STOP [+] P =F P
P [+] STOP =F P
lemma cspF_Int_choice_unit_l:
DIV |~| P =F P
lemma cspF_Int_choice_unit_r:
P |~| DIV =F P
lemmas cspF_Int_choice_unit:
DIV |~| P =F P
P |~| DIV =F P
lemmas cspF_Int_choice_unit:
DIV |~| P =F P
P |~| DIV =F P
lemmas cspF_unit:
STOP [+] P =F P
P [+] STOP =F P
DIV |~| P =F P
P |~| DIV =F P
lemmas cspF_unit:
STOP [+] P =F P
P [+] STOP =F P
DIV |~| P =F P
P |~| DIV =F P
lemma cspF_Rep_int_choice0_DIV:
!! :{} .. Pf =F DIV
lemma cspF_Rep_int_choice_fun_DIV:
inj f ==> !!<f> :{} .. Pf =F DIV
lemma cspF_Rep_int_choice2_DIV:
!set :{} .. Pf =F DIV
lemma cspF_Rep_int_choice3_DIV:
!nat :{} .. Pf =F DIV
lemma cspF_Rep_int_choice1_DIV:
! :{} .. Pf =F DIV
lemmas cspF_Rep_int_choice_DIV:
!! :{} .. Pf =F DIV
! :{} .. Pf =F DIV
!set :{} .. Pf =F DIV
!nat :{} .. Pf =F DIV
lemmas cspF_Rep_int_choice_DIV:
!! :{} .. Pf =F DIV
! :{} .. Pf =F DIV
!set :{} .. Pf =F DIV
!nat :{} .. Pf =F DIV
lemmas cspF_Rep_int_choice_DIV_sym:
DIV =F !! :{} .. Pf1
lemmas cspF_Rep_int_choice_DIV_sym:
DIV =F !! :{} .. Pf1
lemmas cspF_Rep_int_choice_empty:
!! :{} .. Pf =F DIV
! :{} .. Pf =F DIV
!set :{} .. Pf =F DIV
!nat :{} .. Pf =F DIV
lemmas cspF_Rep_int_choice_empty:
!! :{} .. Pf =F DIV
! :{} .. Pf =F DIV
!set :{} .. Pf =F DIV
!nat :{} .. Pf =F DIV
lemma cspF_Rep_int_choice_unit0:
C ≠ {} ==> !! c:C .. P =F P
lemma cspF_Rep_int_choice_unit_fun:
X ≠ {} ==> !!<f> x:X .. P =F P
lemma cspF_Rep_int_choice_unit_com:
X ≠ {} ==> ! x:X .. P =F P
lemmas cspF_Rep_int_choice_unit:
C ≠ {} ==> !! c:C .. P =F P
X ≠ {} ==> !!<f> x:X .. P =F P
X ≠ {} ==> ! x:X .. P =F P
lemmas cspF_Rep_int_choice_unit:
C ≠ {} ==> !! c:C .. P =F P
X ≠ {} ==> !!<f> x:X .. P =F P
X ≠ {} ==> ! x:X .. P =F P
lemma cspF_Rep_int_choice_const0:
[| C ≠ {}; ∀c∈C. Pf c = P |] ==> !! :C .. Pf =F P
lemma cspF_Rep_int_choice_const_fun:
[| inj f; X ≠ {}; ∀x∈X. Pf x = P |] ==> !!<f> :X .. Pf =F P
lemma cspF_Rep_int_choice_const_com:
[| X ≠ {}; ∀x∈X. Pf x = P |] ==> ! :X .. Pf =F P
lemmas cspF_Rep_int_choice_const:
[| C ≠ {}; ∀c∈C. Pf c = P |] ==> !! :C .. Pf =F P
[| inj f; X ≠ {}; ∀x∈X. Pf x = P |] ==> !!<f> :X .. Pf =F P
[| X ≠ {}; ∀x∈X. Pf x = P |] ==> ! :X .. Pf =F P
lemmas cspF_Rep_int_choice_const:
[| C ≠ {}; ∀c∈C. Pf c = P |] ==> !! :C .. Pf =F P
[| inj f; X ≠ {}; ∀x∈X. Pf x = P |] ==> !!<f> :X .. Pf =F P
[| X ≠ {}; ∀x∈X. Pf x = P |] ==> ! :X .. Pf =F P
lemma cspF_Int_Rep_int_choice_union:
!! :C1.0 .. P1f |~| !! :C2.0 .. P2f =F !! c:(C1.0 ∪ C2.0) .. IF (c ∈ C1.0 ∧ c ∈ C2.0) THEN P1f c |~| P2f c ELSE IF (c ∈ C1.0) THEN P1f c ELSE P2f c
lemma cspF_Rep_int_choice_union_Int0:
!! :(C1.0 ∪ C2.0) .. Pf =F !! :C1.0 .. Pf |~| !! :C2.0 .. Pf
lemma cspF_Rep_int_choice_union_Int_fun:
!!<f> :(X1.0 ∪ X2.0) .. Pf =F !!<f> :X1.0 .. Pf |~| !!<f> :X2.0 .. Pf
lemma cspF_Rep_int_choice_union_Int_com:
! :(X1.0 ∪ X2.0) .. Pf =F ! :X1.0 .. Pf |~| ! :X2.0 .. Pf
lemmas cspF_Rep_int_choice_union_Int:
!! :(C1.0 ∪ C2.0) .. Pf =F !! :C1.0 .. Pf |~| !! :C2.0 .. Pf
!!<f> :(X1.0 ∪ X2.0) .. Pf =F !!<f> :X1.0 .. Pf |~| !!<f> :X2.0 .. Pf
! :(X1.0 ∪ X2.0) .. Pf =F ! :X1.0 .. Pf |~| ! :X2.0 .. Pf
lemmas cspF_Rep_int_choice_union_Int:
!! :(C1.0 ∪ C2.0) .. Pf =F !! :C1.0 .. Pf |~| !! :C2.0 .. Pf
!!<f> :(X1.0 ∪ X2.0) .. Pf =F !!<f> :X1.0 .. Pf |~| !!<f> :X2.0 .. Pf
! :(X1.0 ∪ X2.0) .. Pf =F ! :X1.0 .. Pf |~| ! :X2.0 .. Pf
lemma cspF_Depth_rest_Zero:
P |. 0 =F DIV
lemma cspF_Depth_rest_min:
P |. n |. m =F P |. min n m
lemma cspF_Depth_rest_congE:
[| P =F Q; ∀m. P |. m =F Q |. m ==> S |] ==> S
lemma cspF_Depth_rest_n:
P |. n |. n =F P |. n
lemma cspF_nat_Depth_rest_UNIV:
P =F !nat :UNIV .. Depth_rest P
lemma cspF_nat_Depth_rest_lengthset:
P =F !nat :lengthset P .. Depth_rest P
lemmas cspF_nat_Depth_rest:
P =F !nat :UNIV .. Depth_rest P
P =F !nat :lengthset P .. Depth_rest P
lemmas cspF_nat_Depth_rest:
P =F !nat :UNIV .. Depth_rest P
P =F !nat :lengthset P .. Depth_rest P
lemma cspF_Ext_pre_choice_partial:
? :X -> Pf =F ? x:X -> IF (x ∈ X) THEN Pf x ELSE DIV
lemma cspF_Rep_int_choice_partial0:
!! :C .. Pf =F !! c:C .. IF (c ∈ C) THEN Pf c ELSE DIV
lemma cspF_Rep_int_choice_partial_fun:
inj f ==> !!<f> :X .. Pf =F !!<f> x:X .. IF (x ∈ X) THEN Pf x ELSE DIV
lemma cspF_Rep_int_choice_partial_com:
! :X .. Pf =F ! x:X .. IF (x ∈ X) THEN Pf x ELSE DIV
lemmas cspF_Rep_int_choice_partial:
!! :C .. Pf =F !! c:C .. IF (c ∈ C) THEN Pf c ELSE DIV
inj f ==> !!<f> :X .. Pf =F !!<f> x:X .. IF (x ∈ X) THEN Pf x ELSE DIV
! :X .. Pf =F ! x:X .. IF (x ∈ X) THEN Pf x ELSE DIV
lemmas cspF_Rep_int_choice_partial:
!! :C .. Pf =F !! c:C .. IF (c ∈ C) THEN Pf c ELSE DIV
inj f ==> !!<f> :X .. Pf =F !!<f> x:X .. IF (x ∈ X) THEN Pf x ELSE DIV
! :X .. Pf =F ! x:X .. IF (x ∈ X) THEN Pf x ELSE DIV