本文へスキップ
Bio/synthetic polymer hub

Health and Medical Research Institute
National Institute of Advanced Industrial Science and Technology (
AIST)

ACHIEVEMENT新着情報

   
       


□ Preprints
  1. Site-specific effects of acetylation within histone H3 tail peptide on liquid-liquid phase separation with DNA.
    Masahiro Mimura, Hiroka Sugai, Tomoshi Kameda, Ryo Kitahara, Soichiro Kitazawa, Yoichi Shinkai,
    Ryoji Kurita, Shunsuke Tomita*
    ChemRxiv, DOI: 10.26434/chemrxiv-2023-1zplz (2023) [Link].




□ Articles

  1. Unlocking the potential of bioanalytical data through machine learning.
    Shunsuke Tomita*
    Analytical Sciences, 39, 1937-1938 (2023) [Link]

  2. Detection of fibril nucleation in micrometer-sized protein condensates and suppression of Sup35NM fibril nucleation by liquid–liquid phase separation.
    Mao Fukuyama*, Suguru Nishinami, Yoko Maruyama, Taiki Ozawa, Shunsuke Tomita, Yumiko Ohhashi, Motohiro Kasuya, Masao Gen, Eri Chatani, Kentaro Shiraki, Akihide Hibara*
    Analytical Chemistry, 95, 9855-9862 (2023) [Link]
    ChemRxiv, DOI: 10.26434/chemrxiv-2022-tp1cm (2022) [Link]

  3. Fluorescence Imaging of Nanoparticle Uptake into Liquid-Liquid Phase-Separated Droplets
    Keitaro Kojima, Shunsuke Tomita, Masao Kamimura
    ChemPlusChem, 88, e202300207 (2023) [Link].

  4. Phase-separation propensity of non-ionic amino acids in peptide-based complex coacervation systems
    Yuto Akahoshi, Hiroka Sugai, Masahiro Mimura, Yoichi Shinkai, Ryoji Kurita, Kentaro Shiraki,
    Shunsuke Tomita
    *
    Biomacromolecules, 24, 704-713 (2023) [Link].
    ChemRxiv, DOI: 10.26434/chemrxiv-2022-5x360 (2022) [Link].

  5. Quantum yield enhancement of firefly bioluminescence with biomolecular condensates
    Ryo Nishihara*, Yoshiki Kihara, Kazuki Niwa, Masahiro Mimura, Shunsuke Tomita*, Ryoji Kurita
    Chemical Communications, 58, 13317-13320 (2022) [Link].
    ■ Selected as 'Front cover'

  6. Damage-free evaluation of cultured cells based on multivariate analysis with a single-polymer probe
    Hiroka Sugai*, Shunsuke Tomita, Sayaka Ishihara, Kentaro Shiraki, Ryoji Kurita*
    Chemical Communications, 58, 11083-11086 (2022) [Link].
    ■ Selected as 'Inside front cover'

  7. A polymer-based chemical tongue for the non-invasive monitoring of osteogenic stem-cell differentiation by pattern recognition of serum-supplemented spent media
    Shunsuke Tomita*, Sayaka Ishihara, Ryoji Kurita*
    Journal of Materials Chemistry B, 10, 7581-7590 (2022) [Link].
    ChemRxiv, DOI: 10.26434/chemrxiv-2022-fpm9s (2022) [Link].
    ■ Selected as 'Emerging Investigators'

  8. Polymer-based chemical-nose systems for optical-pattern recognition of gut microbiota
    Shunsuke Tomita†*, Hiroyuki Kusada†, Naoshi Kojima, Sayaka Ishihara, Koyomi Miyazaki, Hideyuki Tamaki, Ryoji Kurita*
    Chemical Science, 13, 5830-583 (2022), †equally contributed. [Link].
    ChemRxiv, DOI: 10.26434/chemrxiv.12649826 (2020) [Link].
    ■ Selected as 'Back cover'
    ■ プレスリリース 「腸内フローラを利用してマウスの健康状態を迅速に判定する技術を開発」
      [Link (Ja)] [Link (En)]
    ■ 紹介記事が日刊工業新聞(2022/5/17)、Chemistry World(2022/6/6)、日刊ケミカルニュース(2022/7/10)に掲載

  9. Chemical tongues: Biomimetic recognition using arrays of synthetic polymers
    Shunsuke Tomita*
    Polymer Journal, 54, 851-862 (2022) [Link].

  10. Dynamic behavior of liquid droplets with enzyme compartmentalization triggered by sequential glycolytic enzyme reactions
    Tomoto Ura, Shunsuke Tomita, Kentaro Shiraki*
    Chemical Communications, 57, 12544-12547 (2021) [Link].
    ChemRxiv, DOI: 10.26434/chemrxiv.11930403 (2020) [Link].

  11. Uncharged components of single-stranded DNA modulate liquid-liquid phase separation with cationic linker histone H1
    Masahiro Mimura, Shunsuke Tomita*, Hiroka Sugai, Yoichi Shinkai, Sayaka Ishihara, Ryoji Kurita*
    Frontiers in Cell and Developmental Biology, 9, 710729 (2021) [Link].
    Special Issue 'Biological Phase Separation'

  12. Quadruplex folding of DNA promotes the condensation of linker histones via liquid-liquid phase separation
    Masahiro Mimura, Shunsuke Tomita*, Yoichi Shinkai, Takuya Hosokai, Hiroyuki Kumeta, Tomohide Saio, Kentaro Shiraki, Ryoji Kurita*
    Journal of the American Chemical Society, 143, 9849-9857 (2021) [Link].
    ChemRxiv, DOI: 10.26434/chemrxiv.11822076 (2021) [Link].
    ■ Selected as 'Supplementary Cover'

  13. Affinity diversification of a polymer probe for pattern-recognition-based biosensing using chemical additives
    Hiroki Okada, Masahiro Mimura, Shunsuke Tomita*, Ryoji Kurita*
    Analytical Sciences, 37, 713-719 (2021) [Link].
    Special Issue 'Analytical Biomaterials'
    ■ Selected as 'Hot Articles'

  14. Pattern-recognition-based identification of proteases and their complexes by a one-component array composed of a dansyl-modified charged polymer
    Shunsuke Tomita*, Ryoji Kurita*
    Sensors and Materials, 33, 233-240 (2021) [Link].

  15. A microfluidic sensing system with a multichannel surface plasmon resonance chip: Damage-free characterization of cells by pattern recognition
    Hiroka Sugai, Shunsuke Tomita*, Sayaka Ishihara, Kyoko Yoshioka, Ryoji Kurita*
    Analytical Chemistry, 92, 14939-14946 (2020) [Link].
    ChemRxiv, DOI: 10.26434/chemrxiv.12052422 (2020) [Link].

  16. A multichannel pattern-recognition-based protein sensor with a fluorophore-conjugated single-stranded DNA set
    Mari Okada, Hiroka Sugai, Shunsuke Tomita*, Ryoji Kurita*
    Sensors, 20, 5110 (2020) [Link].
    Special Issue 'Nanosensors for Biomedical Applications'

  17. A biomimetic sensor array based on a single fluorescent block-copolymer for the pattern recognition of proteins
    Shunsuke Tomita*, Hiroka Sugai, Sayaka Ishihara, Takuya Hosokai, Ryoji Kurita*
    Chemistry Letters, 49, 1447-1451 (2020) [Link].
    ■ Selected as 'Editor's Choice' and 'Inside Cover'

  18. Development of neutral pH-responsive microgels by tuning cross-linking conditions.
    Satoshi Okada, Satoko Takayasu, Shunsuke Tomita, Yoshio Suzuki, Shinya Yamamoto
    Sensors, 20, 3367 (2020) [Link]
    Special Issue 'Nanosensors for Biomedical Applications'

  19. Pattern-based sensor arrays for cell characterization: From materials and data analyses to biomedical applications.
    Hiroka Sugai, Shunsuke Tomita*, Ryoji Kurita*
    Analytical Sciences, 36, 923-934 (2020) [Link]
    ■ Selected as 'Hot Articles'

  20. Optical fingerprints of proteases and their inhibited complexes provided by differential cross-reactivity of fluorophore-labeled single-stranded DNA
    Shunsuke Tomita*, Hiroka Sugai, Masahiro Mimura, Sayaka Ishihara, Kentaro Shiraki, Ryoji Kurita*
    ACS Applied Materials & Interfaces, 11, 47428-47436 (2019) [Link].

  21. A one-component array based on a dansyl-modified polylysine: Generation of differential fluorescent signatures for the discrimination of human cells
    Hiroka Sugai, Shunsuke Tomita*, Sayaka Ishihara, Ryoji Kurita*
    ACS Sensors, 4, 827-831 (2019) [Link].

  22. Biomimicry recognition of proteins and cells using a small array of block-copolymers appended with amino acids and fluorophores
    Shunsuke Tomita*, Sayaka Ishihara, Ryoji Kurita*
    ACS Applied Materials & Interfaces, 11, 6751-6758 (2019) [Link].

  23. Fingerprint-based protein identification in cell culture medium using environment-sensitive turn-on fluorescent polymer
    Hiroka Sugai, Shunsuke Tomita*, Ryoji Kurita
    Sensors and Materials, 31, 1-11 (2019) [Link].
    Special Issue 'Micro/Nano Sensing Platforms Exploring Biomedical Innovation'

  24. Array-based generation of response patterns with common fluorescent dyes for identification of proteins and cells
    Masahiro Mimura, Shunsuke Tomita*, Ryoji Kurita, Kentaro Shiraki
    Analytical Sciences, 35, 99-102 (2019). [Link].
    Special Issue 'New Insights and Concepts of Biological Sciences Based on Cell and Biomolecule Analysis'

  25. Noninvasive fingerprinting-based tracking of replicative cellular senescence using a colorimetric polyion complex array
    Shunsuke Tomita*, Hiroki Nomoto, Toru Yoshitomi, Kazutoshi Iijima, Mineo Hashizume, Keitaro Yoshimoto*
    Analytical Chemistry, 90, 6348-6352 (2018). [Link].

  26. A multi-fluorescent DNA/graphene oxide conjugate sensor for signature-based protein discrimination
    Shunsuke Tomita*, Sayaka Ishihara, Ryoji Kurita*
    Sensors, 17, 2194 (2017). [Link].
    Special Issue 'Dedication to Professor Eiichi Tamiya: Over 30 Years of Outstanding Contributions to the Field of Sensors and Biosensors'

  27. One-step identification of antibody degradation pathways using fluorescence signatures generated by cross-reactive DNA-based arrays
    Shunsuke Tomita*, Ayumi Matsuda, Suguru Nishinami, Ryoji kurita, Kentaro Shiraki
    Analytical Chemistry, 89, 7818-7822 (2017). [Link].
    ■ 紹介記事が日経産業新聞に掲載(2018/06/08)

  28. Noncovalent PEGylation through protein-polyelectrolyte interaction: Kinetic experiment and molecular dynamics simulation
    Takaaki Kurinomaru, Kengo Kuwada, Shunsuke Tomita, Tomoshi Kameda, Kentaro Shiraki*
    The Journal of Physical Chemistry B, 121, 6785-6791 (2017). [Link].

  29. Environment-sensitive turn-on fluorescent polyamino acid: Fingerprinting protein populations with post-translational modifications
    Shunsuke Tomita*, Sayaka Ishihara, Ryoji Kurita*
    ACS Applied Materials & Interfaces
    , 9, 22970-22976 (2017). [Link].

  30. Small spheroids of adipose-derived stem cells with time-dependent enhancement of IL-8 and VEGF-A secretion
    Furuhata Yuichi, Yuka Kikuchi, Shunsuke Tomita, Keitaro Yoshimoto*
    Genes to Cells, 21, 1380-1386 (2016). [Link].

  31. Artificial modification of an enzyme for construction of cross-reactive polyion complexes to fingerprint signatures of proteins and mammalian cells
    Shunsuke Tomita*, Osamu Niwa, Ryoji Kurita*
    Analytical Chemistry, 88, 9079-9086 (2016). [Link]

  32. Noncovalent PEGylation-based enzyme switch in physiological saline conditions using quaternization polyamines
    Kengo Kuwada, Takaaki Kurinomaru, Shunsuke Tomita, Kentaro Shiraki*
    Colloid and Polymer Science, 294, 1551-1556 (2016). [Link]

  33. Wrap-and-Strip technology of protein–polyelectrolyte complex for biomedical application
    Kentaro Shiraki*, Takaaki Kurinomaru, Shunsuke Tomita
    Current Medicinal Chemistry, 23, 276-289 (2016). [Link]

  34. Small amine molecules: Solvent design toward facile improvement of protein stability against aggregation and inactivation
    Kentaro Shiraki*, Shunsuke Tomita, Naoto Inoue
    Current Pharmaceutical Biotechnology, 17, 116-125 (2016). [Link]

  35. The use of an enzyme-based sensor array to fingerprint proteomic signatures of sera from different mammalian species
    Shunsuke Tomita*, Saki Yokoyama, Ryoji Kurita, Osamu Niwa, Keitaro Yoshimoto*
    Analytical Sciences, 32, 237-240 (2016). [Link]

  36. A polyion complex sensor array for markerless and noninvasive identification of differentiated mesenchymal stem cells from human adipose tissue
    Shunsuke Tomita*, Miho Sakao, Ryoji Kurita, Osamu Niwa, Keitaro Yoshimoto*
    Chemical Science, 6, 5831-5836 (2015). [Link]

  37. Enzymatic fingerprinting of structurally similar homologous proteins using polyion complex library constructed by tuning PEGylated polyamine functionalities
    Shunsuke Tomita*, Tomohiro Soejima, Kentaro Shiraki, Keitaro Yoshimoto*
    Analyst, 139, 6100-6103 (2014). [Link]

  38. Charge‐separated Fmoc‐peptide β‐sheets: Sequence‐secondary structure relationship for arranging charged side chains on both sides
    Toru Nakayama, Taro Sakuraba, Shunsuke Tomita, Akira Kaneko, Eisuke Takai, Kentaro Shiraki, Kentaro Tashiro, Noriyuki Ishii, Yuri Hasegawa, Yoichi Yamada, Reiji Kumai, Yohei Yamamoto*
    Asian Journal of Organic Chemistry, 3, 1181-1188 (2014). [Link]

  39. Enzyme hyperactivation system based on a complementary charged pair of polyelectrolytes and substrates
    Takaaki Kurinomaru, Shunsuke Tomita, Yoshihisa Hagihara, Kentaro Shiraki*
    Langmuir, 30, 3826-3831 (2014). [Link]

  40. Polyion complex libraries possessing naturally occurring differentiation for pattern-based protein discrimination
    Shunsuke Tomita*, Keitaro Yoshimoto*
    Chemical Communications, 49, 10430-10432 (2013). [Link]

  41. Arginine inhibits adsorption of proteins on polystyrene surface
    Yui Shikiya, Shunsuke Tomita, Tsutomu Arakawa, Kentaro Shiraki*
    PLoS ONE, 8, e70762 (2013). [Link]

  42. Oligoethylene glycols prevent thermal aggregation of α-chymotrypsin in a temperature-dependent manner: Implications for design guidelines
    Shunsuke Tomita, Yumiko Tanabe, Kentaro Shiraki*
    Biotechnology Progress, 27, 855-862 (2013). [Link]

  43. Glutathione ethylester, a novel protein refolding reagent, enhances both the efficiency of refolding and correct disulfide formation
    Len Ito*, Masaki Okumura, Kohsaku Tao, Yusuke Kasai, Shunsuke Tomita, Akiko Oosuka, Hidetoshi Yamada, Tomohisa Shibano, Kentaro Shiraki, Takashi Kumasaka, Hiroshi Yamaguchi
    The Protein Journal, 31, 499-503 (2012). [Link]

  44. Different mechanisms of action of poly(ethylene glycol) and argnine on thermal inactivation of lysozyme and ribonuclease A
    Shunsuke Tomita, Yukio Nagasaki, Kentaro Shiraki*
    Biotechnology and Bioengineering, 109, 2543-2552 (2012)[Link]

  45. Improved Complementary Polymer Pair System: Switching for Enzyme Activity by PEGylated Polymers
    Takaaki Kurinomaru, Shunsuke Tomita, Shinpei Kudo, Sumon Ganguli, Yukio Nagasaki, Kentaro Shiraki*
    Langmuir, 28, 4334-4338 (2012), equally contributed. [Link]

  46. Poly(acrylic acid) is a common non-competitive inhibitor for cationic enzymes with high affinity and reversibility
    Shunsuke Tomita, Kentaro Shiraki*
    Journal of Polymer Science Part A: Polymer Chemistry, 49, 3835-3841 (2011). [Link]

  47. Arginine controls heat-induced cluster-cluster aggregation of lysozyme at around the isoelectric point
    Shunsuke Tomita, Hiroki Yoshikawa, Kentaro Shiraki*
    Biopolymers, 95, 695-701 (2011). [Link]

  48. Why do solution additives suppress the heat-induced inactivation of proteins? Inhibition of chemical modifications
    Shunsuke Tomita, Kentaro Shiraki*
    Biotechnology Progress, 27, 855-862 (2011). [Link]

  49. Improving the heat resistance of ribonuclease A by the addition of poly(N,N-diethylaminoethyl methacrylate)-graft-poly(ethylene glycol) (PEAMA-g-PEG)
    Sumon Ganguli, Keitaro Yoshimoto, Shunsuke Tomita, Hiroshi Sakuma, Tsuneyoshi Matsuoka, Kentaro Shiraki, Yukio Nagasaki*
    Macromolecular Bioscience, 10, 853-859 (2010). [Link]

  50. Enzyme switch by complementary polymer pair system (CPPS)
    Shunsuke Tomita, Len Ito, Hiroshi Yamaguchi, Gen-ichi Konishi, Yukio Nagasaki, Kentaro Shiraki*
    Soft Matter, 6, 5320-5326 (2010). [Link]
    ■ Selected as the back cover of the issue

  51. Regulation of lysozyme activity based on thermotolerant protein/smart polymer complex formation
    Sumon Ganguli, Keitaro Yoshimoto, Shunsuke Tomita, Hiroshi Sakuma, Tsuneyoshi Matsuoka, Kentaro Shiraki, Yukio Nagasaki*
    Journal of the American Chemical Society, 131, 6549-6553 (2009). [Link]

  52. Synergistic effect of polyethylene glycol with arginine on the prevention of heat-induced aggregation of lysozyme
    Shunsuke Tomita, Hiroyuki Hamada, Yukio Nagasaki, Kentaro Shiraki*
    Journal of Physics: Conference Series, 106, 012022-012026 (2008). [Link]

  53. Amidated amino acids are prominent additives to prevent heat-induced aggregation of lysozyme
    Tsuneyoshi Matsuoka, Shunsuke Tomita, Hiroyuki Hamada, Kentaro Shiraki*
    Journal of Bioscience and Bioengineering, 103, 440-443 (2007). [Link]




□ Books

  1. DNA とタンパク質の相分離の再現実験
    冨田 峻介、三村 真大
    in 実験医学別冊 最強のステップUPシリーズ フロントランナー直伝 相分離解析プロトコール
    〜今すぐ実験したくなる、論文にはないコツや技.
    , pp.58-65.
    加藤 昌人, 白木 賢太郎, 中川 真一 編, 羊土社 (2022) [Link]

  2. 特徴パターンの認識
    菅井 祥加、冨田 峻介
    in 相分離生物学の全貌., pp.343-348. 白木 賢太郎 編, 東京化学同人 (2020) [Link]

  3. Noninvasive and label-free cell characterization for tissue engineering
    Shunsuke Tomita
    in Biomedical Engineering Challenges: A Chemical Engineering Insight., pp.145-173
    Editors: Piemonte V., Basile A., Ito T., Marrelli L., John Wiley & Sons, Ltd., Hoboken, NJ (2018) [Link]




□ Articles (in Japanese)

  1. 蛍光ポリマーとパターン認識を用いるフルーツジュースの判別法
    冨田 峻介, 栗田 僚二
    分析化学
    , 73(3), 111-116 (2024) [Link]

  2. タンパク質-タンパク質相互作用の分析技術
    冨田 峻介, 齋尾 智英
    月刊「細胞」
    , 56(2), 80-84 (2024) [Link]

  3. Chemical tongueを用いた生体分子/試料認識
    冨田 峻介
    生物物理
    , 63(4), 212-217 (2023) [Link]

  4. 細胞培養液の特徴パターンを認識するchemical tongue
    菅井 祥加, 冨田 峻介, 三村 真大
    月刊「細胞」
    , 55(5), 347-351 (2023) [Link]

  5. グアニン四重鎖構造が誘起するヒストン/DNA液–液相分離
    冨田 峻介, 三村 真大
    生化学
    , 94, 754-758 (2022) [Link]

  6. 味覚の仕組みを模倣して複雑なバイオ試料を判別するセンシング技術
    冨田 峻介
    Bio九州
    , 234, 10-14 (2022) [Link]

  7. 相分離メガネで見えたDNA構造の新たな役割
    三村 真大、冨田 峻介、栗田 僚二
    化学
    , 76, 68-69 (2021) [Link]

  8. 分子アレイデバイスと多変量解析による生体試料評価法
    冨田 峻介、菅井 祥加、 南木 創、 栗田 僚二
    電気化学
    , 88, 262-271 (2020) [Link]

  9. Biomimicry recognition using an array of block copolymers appended with amino acids and flurophores
    Shunsuke Tomita
    高分子, 69, 332 (2020)

  10. 生体試料の特徴情報を出力する交差反応性ポリマーアレイを利用したバイオメトリクス
    菅井 祥加、冨田 峻介、栗田 僚二
    ケミカルエンジニヤリング, 63, 58-65 (2018)

  11. タンパク質の特徴パターンを出力できる分子群を用いた生体試料センシング
    冨田 峻介
    月刊バイオインダストリー, 35, 6-14 (2018) [Link]

  12. 交差反応的光学フィンガープリンティングを利用するタンパク質センシング
    冨田 峻介、吉本 敬太郎、丹羽 修、栗田 僚二
    分析化学, 66, 1-10 (2017) [Link]

  13. 非怠け者の元旦働き
    冨田 峻介
    ぶんせき, 497, 180 (2016) [PDF]

  14. セクレトームフィンガーパタン分析を実現するバイオマテリアル設計
    冨田 峻介、吉本 敬太郎
    バイオマテリアル―生体材料―, 34, 46-49 (2016)

  15. 交差反応型センサアレイを用いるクルードなタンパク質溶液の評価
    冨田 峻介、吉本 敬太郎
    生物工学会誌, 93, 285-288 (2015) [Link] [PDF]

  16. バイオマテリアルの夢を語る
    冨田 峻介
    バイオマテリアル―生体材料―, 32, 333 (2014)

  17. 細胞の形態的特徴を利用する間葉系幹細胞分化状態の予測管理
    冨田 峻介
    ぶんせき, 471, 132 (2014)

  18. ナノ会合体と細菌の非特異的な相互作用を利用する細菌種の同定
    冨田 峻介
    ぶんせき, 456, 722 (2012)

  19. Solution additives to suppress protein deterioration: Non-covalent aggregation and covalent modification
    Shunsuke Tomita, Kentaro Shiraki*
    Journal of Japanese Society for Extremophiles, 9, 81-89 (2010)

  20. タンパク質熱凝集を抑制する化合物
    松岡 常吉、冨田 峻介、平野 篤
    蛋白質科学会アーカイブ, 1, e041 (2008)




□ Patents

  1. 酒類の品質管理方法
    特願2023-178769

  2. 血清または血清代替物の品質管理方法
    特願2023-130004

  3. 神経変性疾患に関連するタンパク質および神経変性疾患の治療薬または予防薬のスクリーニング方法
    特願2023-102490

  4. 微生物叢の分析方法
    特許第6957064号, US17/615853

  5. マルチチャネル型センサチップを用いた試料評価方法
    特開2020-187060

  6. タンパク質を含有する試料の分析方法
    特許第6741259号, US16/348312

  7. 蛋白質を含む液状組成物中における蛋白質の安定化方法
    特許第5119545号




□ Collaborations


 民間企業6件、大学多数


ナビゲーション

バナースペース