nkysdb: なかよし論文データベース

岡崎 智久 様の 共著関連データベース

Search this DB
using Google

+(A list of literatures under single or joint authorship with "岡崎 智久")

共著回数と共著者名 (a list of the joint author(s))

    38: 岡崎 智久

    17: 上田 修功

    10: 吉村 令慧, 藤原 広行

    8: 岩城 麻子

    6: 小松 信太郎, 山崎 健一, 平原 和朗, 森川 信之, 深畑 幸俊

    5: 中川 潤, 大内 悠平, 大志万 直人, 寺石 眞弘, 小川 康雄, 川崎 慎吾, 米田 格, 鈴木 惇史, 齋藤 全史郎

    4: 臼井 嘉哉

    3: 岩田 具治

    2: 久保 久彦, 佐藤 大祐, 八谷 大岳, 前田 宜浩, 加納 将行, 小穴 温子, 高橋 温志

    1: Wu Stephen, 下條 賢梧, 亀 伸樹, 伊藤 武男, 加藤 慎也, 友澤 裕介, 司 宏俊, 宇津木 充, 宮本 崇, 小寺 祐貴, 山田 真澄, 岡田 望海, 引田 智樹, 溜渕 功史, 直井 誠, 相澤 広記, 石井 透, 竹内 孝, 西山 竜一, 西村 卓也


発行年とタイトル (Title and year of the issue(s))

    2016: 1次元異方層構造におけるMT応答関数による走向判定の理論的考察(SEM35 10) [Net] [Bib]
    Analytical Investigations of the Magnetotelluric Directionality Responses in 1 D Anisotropic Media (SEM35 10) [Net] [Bib]

    2016: 全地球規模でのプレート運動速度のクラスター解析への試み 角速度空間における定式化 (S03 P03) [Net] [Bib]
    Toward Clustering of the Plate Motion Velocities in a Global Scale Formulation in Angular Velocity Space (S03 P03) [Net] [Bib]

    2016: 四国西部域での広帯域MT観測 [Net] [Bib]
    Wideband Magnetotelluric Measurements in the Western Part of Shikoku Island [Net] [Bib]

    2016: 四国西部域の広域比抵抗構造(S06 14) [Net] [Bib]
    Large scale electrical resistivity structure around the Western Part of Shikoku (S06 14) [Net] [Bib]

    2016: 座標変換性に着目したMT応答に内在する異常位相の判別方法(R003 P06) [Net] [Bib]
    Discriminating Anomalous Phases in Magnetotelluric Responses (R003 P06) [Net] [Bib]

    2016: 豊後水道スロースリップ域周辺の広域比抵抗構造(R003 03) [Net] [Bib]
    Large scale electrical resistivity structure around the long term Slow Slip Events in the Bungo Channel (R003 03) [Net] [Bib]

    2017: Large scale electrical resistivity structure around the long term Slow Slip Events beneath the Bungo Channel region, southwest Japan (SSS04 P40) [Net] [Bib]

    2017: MT応答の異常位相に関するマルチ・スペーシング観測(SEM19 07) [Net] [Bib]
    Multi spacing MT observation regarding anomalous phase responses (SEM19 07) [Net] [Bib]

    2017: 異方性層構造におけるMT応答関数の周波数展開(R003 P02) [Net] [Bib]
    Frequency Expansion of MT Impedance Tensor for Anisotropic Layered Media (R003 P02) [Net] [Bib]

    2018: Electrical resistivity structure around the long term Slow Slip Events beneath the Bungo Channel region, southwest Japan, by three dimensional wideband magnetotelluric inversion (SCG53 P16) [Net] [Bib]

    2018: 測地データのクラスター解析による全地球のプレート分割(SGD02 09) [Net] [Bib]
    Global distribution of tectonic plates revealed by cluster analyses of geodetic data (SGD02 09) [Net] [Bib]

    2018: 異方層が複数存在する場合の長周期MT応答の特徴(SEM16 11) [Net] [Bib]
    Long period MT responses in media with multiple anisotropic layers (SEM16 11) [Net] [Bib]

    2019: site2vec サイト特性をデータから学習する地震動予測器 (S22P 06) [Net] [Bib]
    site2vec: A Ground Motion Predictor Learning Site Conditions from Data (S22P 06) [Net] [Bib]

    2019: 埋込み機械学習による長周期波形からの広帯域地震動合成(SCG62 P06) [Net] [Bib]
    Broadband ground motion synthesis using embeddig machine learning (SCG62 P06) [Net] [Bib]

    2020: Neural Network Based Ground Motion Model Learning Site Property from Data (SCG60 04) [Net] [Bib]

    2020: 伝播経路を特定した地震動予測ニューラル・ネットワーク(S15P 14) [Net] [Bib]
    Ground Motion Prediction Neural Network with Single Path Uncertainty (S15P 14) [Net] [Bib]

    2021: GNSSデータの解析による日本列島の歪み速度場の推定:Shenの方法と基底関数展開との比較(SSS05 02) [Net] [Bib]
    Estimate of Strain Rate Field in Japan from GNSS Data: Comparison between Shen's Method and Basis Function Expansion (SSS05 02) [Net] [Bib]

    2021: ガウス過程によるCMTデータインバージョンの試み(S22 04) [Net] [Bib]
    CMT Data Inversion Using Gaussian Processes (S22 04) [Net] [Bib]

    2021: ニューラル・ネットワークによる非エルゴード地震動予測式(S15P 13) [Net] [Bib]
    Nonergodic Ground Motion Prediction Model Using Artificial Neural Networks (S15P 13) [Net] [Bib]

    2021: 加速度エンベロープのWasserstein内挿を用いた広帯域地震動合成(SSS11 06) [Net] [Bib]
    Broadband Ground Motion Synthesis Using Wasserstein Interpolation of Acceleration Envelopes (SSS11 06) [Net] [Bib]

    2021: 地震動予測式のサイト汎化性能:単調ニューラル・ネットワークの適用(SCG52 05) [Net] [Bib]
    Site Generalization Performance of Ground Motion Models: Application of Monotonic Neural Networks (SCG52 05) [Net] [Bib]

    2021: 日本列島の変形運動を理解するための枠組み:島弧間変動と島弧内変動(SCG50 03) [Net] [Bib]
    A Framework to Understand Deformation in Japanese Islands: Inter arc Deformation and Intra arc Deformation (SCG50 03) [Net] [Bib]

    2022: Physics Informed Neural NetworkによるDislocation Modelの解法(SCG51 08) [Net] [Bib]
    Solving Dislocation Models Using Physics Informed Neural Networks (SCG51 08) [Net] [Bib]

    2022: ガウス過程を用いたCMTデータ逆解析による時間依存応力場の推定(SCG52 P02) [Net] [Bib]
    Estimation of Time dependent Stress Fields from CMT Data Inversion Using Gaussian Processes (SCG52 P02) [Net] [Bib]

    2022: ガウス過程を用いたオイラーベクトル逆解析による水平速度場の推定(STT40 03) [Net] [Bib]
    Estimation of Horizontal Velocity Fields from Euler Vector Inversion Using Gaussian Processes (STT40 03) [Net] [Bib]

    2022: 地震学逆解析における最適輸送に基づく波形間の距離指標(S21 04) [Net] [Bib]
    Optimal Transport Distance Measure in Geophysical Inversion (S21 04) [Net] [Bib]

    2022: 強震動データベースに基づく地震動予測モデルの比較(S15 16) [Net] [Bib]
    Comparison of Ground Motion Models based on the Strong Motion Database (S15 16) [Net] [Bib]

    2023: Physics Informed Deep Learning for Inverse Modeling of Coseismic Crustal Deformation (SCG55 09) [Net] [Bib]

    2023: ベイジアンニューラルネットワークによる地震動予測式の構築(S15P 15) [Net] [Bib]
    Construction of ground motion models using Bayesian neural networks (S15P 15) [Net] [Bib]

    2023: 地震学・測地学データのベイズ逆解析―基底関数展開とガウス過程(STT44 01) [Net] [Bib]
    Bayesian Inversion Analysis of Seismological and Geodetic Data–Basis Function Expansion and Gaussian Process (STT44 01) [Net] [Bib]

    2023: 深層作用素学習による地殻変動データからの断層形状およびすべり分布同時推定の試み(S21 12) [Net] [Bib]
    Simultaneous estimation of fault geometry and slip distribution from crustal deformation data using deep operator learning (S21 12) [Net] [Bib]

    2024: Physics Informed Deep LearningによるInplane地殻変動の順・逆解析(S21 09) [Net] [Bib]
    Physics Informed Deep Learning for Forward and Inverse Modeling of Inplane Crustal Deformation (S21 09) [Net] [Bib]

    2024: ガウス過程逆解析による応力場時間変化の客観的判定(SCG55 P08) [Net] [Bib]
    Objective Judgement of Time Variation in the Stress field Inversion Using Gaussian Processes (SCG55 P08) [Net] [Bib]

    2024: 劣決定問題における物理深層学習の解の正則性について(S21P 01) [Net] [Bib]
    On regularity of physics informed neural networks in solving ill posed Cauchy problems (S21P 01) [Net] [Bib]

    2024: 地殻変動の断層形状不変性と物理深層学習による効率解法(SGD02 06) [Net] [Bib]
    Fault Geometry Invariance of Crustal Deformation and Streamlined Analysis Using Physics Informed Deep Learning (SGD02 06) [Net] [Bib]

    2024: 多彩な機械学習アプローチによる地震・強震動・地殻変動解析(S20 03) [Net] [Bib]
    Diverse Machine Learning Approaches for Earthquake, Strong Ground Motion, and Crustal Deformation Analyses (S20 03) [Net] [Bib]

    2024: 大規模言語モデル×地震研究をテーマとしたハッカソンの実施(S21P 02) [Net] [Bib]
    Hackathon on Large Language Models and Earthquake Researches (S21P 02) [Net] [Bib]

    2024: 経験的知識を活用した深層学習による地震動予測式の検討(SCG50 P04) [Net] [Bib]
    Empirical knowledge informed deep learning approach for ground motion prediction equations (SCG50 P04) [Net] [Bib]

About this page: