Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory CSP_proc = SKIP + STOP + DIV + Act_prefix + Ext_pre_choice + Ext_choice + Int_choice + Rep_int_choice + Parallel + Hiding + Conditional + Renaming + Seq_compo + Proc_name:(*-------------------------------------------* | CSP-Prover | | December 2004 | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_proc = SKIP + STOP + DIV + Act_prefix + Ext_pre_choice + Ext_choice + Int_choice + Rep_int_choice + Parallel + Hiding + Conditional + Renaming + Seq_compo + Proc_name : (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* Union (B ` A) = (UN x:A. B x) *) (* Inter (B ` A) = (INT x:A. B x) *) declare Union_image_eq [simp del] declare Inter_image_eq [simp del] (* The following simplification is sometimes unexpected. *) (* *) (* not_None_eq: (x ~= None) = (EX y. x = Some y) *) declare not_None_eq [simp del] (***************************************************************** 1. ([[P]]T , [[P]]F) : domSF 2. decompose 3. mono 4. Timeout eval *****************************************************************) (********************************************************* !!! ([[P]]T , [[P]]F) : domSF !!! *********************************************************) lemma proc_domSF[simp]: "([[P]]T ev , [[P]]F ev) : domSF" apply (induct_tac P) apply (simp add: STOP_domSF) apply (simp add: SKIP_domSF) apply (simp add: DIV_domSF) apply (simp add: Act_prefix_domSF) apply (simp add: Ext_pre_choice_domSF) apply (simp add: Ext_choice_domSF) apply (simp add: Int_choice_domSF) apply (simp add: Rep_int_choice_domSF) apply (simp add: Conditional_domSF) apply (simp add: Parallel_domSF) apply (simp add: Hiding_domSF) apply (simp add: Renaming_domSF) apply (simp add: Seq_compo_domSF) apply (simp add: evalT_def evalF_def) apply (simp add: fstSF_def sndSF_def) done (********************************************************* decompose *********************************************************) lemma fstSF_evalSF[simp]: "fstSF ([[P]]SF ev) = [[P]]T ev" apply (simp add: evalSF_def) apply (simp add: pairSF_def) apply (simp add: fstSF_def) apply (simp add: Abs_domSF_inverse) done lemma sndSF_evalSF[simp]: "sndSF ([[P]]SF ev) = [[P]]F ev" apply (simp add: evalSF_def) apply (simp add: pairSF_def) apply (simp add: sndSF_def) apply (simp add: Abs_domSF_inverse) done lemma proc_eqSF_decompo: "([[P]]SF ev1 = [[Q]]SF ev2) = (([[P]]T ev1 = [[Q]]T ev2) & ([[P]]F ev1 = [[Q]]F ev2))" apply (simp add: evalSF_def) apply (simp add: pairSF_def) apply (simp add: Abs_domSF_inject) done lemma proc_eqSF_decompo_fun: "([[P]]SF = [[Q]]SF) = (([[P]]T = [[Q]]T) & ([[P]]F = [[Q]]F))" apply (simp add: expand_fun_eq) by (auto simp add: proc_eqSF_decompo) (* subset *) lemma proc_subsetSF_decompo: "([[P]]SF ev1 <= [[Q]]SF ev2) = (([[P]]T ev1 <= [[Q]]T ev2) & ([[P]]F ev1 <= [[Q]]F ev2))" apply (simp add: evalSF_def) apply (simp add: pairSF_def) apply (simp add: subsetSF_def) apply (simp add: Abs_domSF_inverse) apply (simp add: order_pair_def) done lemma proc_subsetSF_decompo_fun: "([[P]]SF <= [[Q]]SF) = (([[P]]T <= [[Q]]T) & ([[P]]F <= [[Q]]F))" apply (simp add: order_prod_def) apply (simp add: proc_subsetSF_decompo) apply (rule iffI) apply (rule conjI) apply (rule allI) apply (drule_tac x="x" in spec, simp) apply (rule allI) apply (drule_tac x="x" in spec, simp) apply (rule allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) by (simp) (********************************************************* !!! mono [[P]]SF !!! *********************************************************) lemma evalSF_mono: "ev1 <= ev2 ==> [[P]]SF ev1 <= [[P]]SF ev2" apply (simp add: proc_subsetSF_decompo) apply (induct_tac P) (* STOP *) apply (simp add: subsetT_iff STOP_memT) apply (simp add: subsetF_iff STOP_memF) (* SKIP *) apply (simp add: subsetT_iff SKIP_memT) apply (simp add: subsetF_iff SKIP_memF) (* DIV *) apply (simp add: subsetT_iff DIV_memT) apply (simp add: subsetF_iff DIV_memF) (* Prefix *) apply (simp add: Act_prefix_evalT_mono) apply (simp add: Act_prefix_evalF_mono) (* Ext_pre_choice *) apply (simp add: Ext_pre_choice_evalT_mono) apply (simp add: Ext_pre_choice_evalF_mono) (* Ext_choice *) apply (simp add: Ext_choice_evalT_mono) apply (simp add: Ext_choice_evalF_mono) (* Int_choice *) apply (simp add: Int_choice_evalT_mono) apply (simp add: Int_choice_evalF_mono) (* Rep_int_choice *) apply (simp add: Rep_int_choice_evalT_mono) apply (simp add: Rep_int_choice_evalF_mono) (* Conditional *) apply (simp add: Conditional_evalT_mono) apply (simp add: Conditional_evalF_mono) (* Parallel *) apply (simp add: Parallel_evalT_mono) apply (simp add: Parallel_evalF_mono) (* Hiding *) apply (simp add: Hiding_evalT_mono) apply (simp add: Hiding_evalF_mono) (* Renaming *) apply (simp add: Renaming_evalT_mono) apply (simp add: Renaming_evalF_mono) (* Seq_compo *) apply (simp add: Seq_compo_evalT_mono) apply (simp add: Seq_compo_evalF_mono) (* Proc_name *) apply (simp add: Proc_name_evalT_mono) apply (simp add: Proc_name_evalF_mono) done (* mono *) lemma evalSF_mono_fun[simp]: "mono [[P]]SF" by (simp add: mono_def evalSF_mono) (********************************************************* Timeout trace eval *********************************************************) lemma Timeout_memT: "(t :t [[P [> Q]]T ev) = (t :t [[P]]T ev | t :t [[Q]]T ev)" by (simp add: evalT_def memT_UnT) (********************************************************* Timeout failure eval *********************************************************) lemma Timeout_memF: "f :f [[P [> Q]]F ev = (f :f [[Q]]F ev | (EX s X. f = (s,X) & s ~= []t & (s,X) :f [[P]]F ev) | (EX X. f = ([]t,X) & X <= Evset & [Tick]t :t [[P]]T ev))" apply (simp add: Ext_choice_memF) apply (simp add: memF_UnF memF_IntF) apply (simp add: Int_choice_memF) apply (simp add: memT_UnT) apply (simp add: Int_choice_memT) apply (simp add: STOP_memF STOP_memT) apply (rule iffI) (* => *) apply (elim conjE exE disjE, simp_all) apply (rule disjI1) apply (rule domSF_F2_F4, simp_all) (* <= *) apply (elim conjE exE disjE, simp_all) apply (auto elim: memF_pairE) done lemmas Timeout_mem = Timeout_memT Timeout_memF (*------------------------------------------------------* | RewriteBy and composition | *------------------------------------------------------*) lemma RewriteBy_compo: "[[Rewrite P By f]]SF = [[P]]SF o [[f]]DF" apply (induct_tac P) apply (simp_all add: expand_fun_eq proc_eqSF_decompo evalT_def evalF_def) by (simp add: evalDF_def) (****************** to add them again ******************) declare Union_image_eq [simp] declare Inter_image_eq [simp] declare not_None_eq [simp] end
lemma proc_domSF:
([[P]]T ev, [[P]]F ev) ∈ domSF
lemma fstSF_evalSF:
fstSF ([[P]]SF ev) = [[P]]T ev
lemma sndSF_evalSF:
sndSF ([[P]]SF ev) = [[P]]F ev
lemma proc_eqSF_decompo:
([[P]]SF ev1 = [[Q]]SF ev2) = ([[P]]T ev1 = [[Q]]T ev2 ∧ [[P]]F ev1 = [[Q]]F ev2)
lemma proc_eqSF_decompo_fun:
([[P]]SF = [[Q]]SF) = ([[P]]T = [[Q]]T ∧ [[P]]F = [[Q]]F)
lemma proc_subsetSF_decompo:
([[P]]SF ev1 ≤ [[Q]]SF ev2) = ([[P]]T ev1 ≤ [[Q]]T ev2 ∧ [[P]]F ev1 ≤ [[Q]]F ev2)
lemma proc_subsetSF_decompo_fun:
([[P]]SF ≤ [[Q]]SF) = ([[P]]T ≤ [[Q]]T ∧ [[P]]F ≤ [[Q]]F)
lemma evalSF_mono:
ev1 ≤ ev2 ==> [[P]]SF ev1 ≤ [[P]]SF ev2
lemma evalSF_mono_fun:
mono [[P]]SF
lemma Timeout_memT:
(t :t [[P [> Q]]T ev) = (t :t [[P]]T ev ∨ t :t [[Q]]T ev)
lemma Timeout_memF:
(f :f [[P [> Q]]F ev) = (f :f [[Q]]F ev ∨ (∃s X. f = (s, X) ∧ s ≠ []t ∧ (s, X) :f [[P]]F ev) ∨ (∃X. f = ([]t, X) ∧ X ⊆ Evset ∧ [Tick]t :t [[P]]T ev))
lemmas Timeout_mem:
(t :t [[P [> Q]]T ev) = (t :t [[P]]T ev ∨ t :t [[Q]]T ev)
(f :f [[P [> Q]]F ev) = (f :f [[Q]]F ev ∨ (∃s X. f = (s, X) ∧ s ≠ []t ∧ (s, X) :f [[P]]F ev) ∨ (∃X. f = ([]t, X) ∧ X ⊆ Evset ∧ [Tick]t :t [[P]]T ev))
lemma RewriteBy_compo:
[[Rewrite P By f]]SF = [[P]]SF ˆ [[f]]DF