(*-------------------------------------------* | CSP-Prover | | December 2004 | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory STOP = CSP_semantics: (***************************************************************** 1. ([[STOP]]T ev, [[STOP]]F ev) : domSF 2. 3. 4. *****************************************************************) (********************************************************* domT and domF *********************************************************) (*** STOP_memT ***) lemma STOP_memT: "(t :t [[STOP]]T ev) = (t = []t)" by (simp add: evalT_def memT_def Abs_domT_inverse) (*** STOP_domF ***) lemma STOP_domF: "{f. EX X. f = ([]t, X)} : domF" by (simp add: domF_def HC_F2_def) (*** STOP_memF ***) lemma STOP_memF : "(f :f [[STOP]]F ev) = (EX X. f = ([]t, X))" apply (simp add: memF_def evalF_def) by (simp add: STOP_domF Abs_domF_inverse) lemmas STOP_mem = STOP_memT STOP_memF (******************************* domSF *******************************) (* T2 *) lemma STOP_T2 : "HC_T2 ([[STOP]]T ev, [[STOP]]F ev)" by (simp add: HC_T2_def STOP_mem) (* F3 *) lemma STOP_F3 : "HC_F3 ([[STOP]]T ev, [[STOP]]F ev)" by (simp add: HC_F3_def STOP_mem) (* T3_F4 *) lemma STOP_T3_F4 : "HC_T3_F4 ([[STOP]]T ev, [[STOP]]F ev)" by (simp add: HC_T3_F4_def STOP_mem) (*** STOP_domSF ***) lemma STOP_domSF : "([[STOP]]T ev, [[STOP]]F ev) : domSF" apply (simp add: domSF_iff) apply (simp add: STOP_T2) apply (simp add: STOP_F3) apply (simp add: STOP_T3_F4) done end
lemma STOP_memT:
(t :t [[STOP]]T ev) = (t = []t)
lemma STOP_domF:
{f. ∃X. f = ([]t, X)} ∈ domF
lemma STOP_memF:
(f :f [[STOP]]F ev) = (∃X. f = ([]t, X))
lemmas STOP_mem:
(t :t [[STOP]]T ev) = (t = []t)
(f :f [[STOP]]F ev) = (∃X. f = ([]t, X))
lemma STOP_T2:
HC_T2 ([[STOP]]T ev, [[STOP]]F ev)
lemma STOP_F3:
HC_F3 ([[STOP]]T ev, [[STOP]]F ev)
lemma STOP_T3_F4:
HC_T3_F4 ([[STOP]]T ev, [[STOP]]F ev)
lemma STOP_domSF:
([[STOP]]T ev, [[STOP]]F ev) ∈ domSF