Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory Ext_pre_choice = CSP_semantics: (*-------------------------------------------*
| CSP-Prover |
| December 2004 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory Ext_pre_choice = CSP_semantics:
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare disj_not1 [simp del]
(* The following simplification is sometimes unexpected. *)
(* *)
(* not_None_eq: (x ~= None) = (EX y. x = Some y) *)
declare not_None_eq [simp del]
(*********************************************************
Dom_T
*********************************************************)
(*** Ext_pre_choice_domT ***)
lemma Ext_pre_choice_domT:
"{t. t = []t |
(EX a s. t = [Ev a]t @t s & s :t [[Pf a]]T ev & a : X) } : domT"
apply (simp add: domT_def HC_T1_def)
apply (rule conjI)
apply (rule_tac x="[]t" in exI, simp)
apply (simp add: prefix_closed_def)
apply (intro allI impI)
apply (elim conjE exE)
apply (erule disjE, simp) (* []t *)
apply (elim conjE exE, simp)
apply (erule disjE, simp) (* None --> contradict *)
apply (erule disjE, simp) (* []t *)
apply (elim conjE exE, simp)
apply (rule_tac x="a" in exI)
apply (rule_tac x="v'" in exI, simp)
apply (rule memT_prefix_closed)
by (simp_all)
(*** Ext_pre_choice_memT ***)
lemma Ext_pre_choice_memT:
"(t :t [[? :X -> Pf ]]T ev) =
(t = []t | (EX a s. t = [Ev a]t @t s & s :t [[Pf a]]T ev & a : X))"
apply (simp add: evalT_def)
by (simp add: memT_def Abs_domT_inverse Ext_pre_choice_domT[simplified memT_def])
(*********************************************************
Dom_F
*********************************************************)
(*** Ext_pre_choice_domF ***)
lemma Ext_pre_choice_domF:
"{f. (EX Y. f = ([]t,Y) & Ev`X Int Y = {}) |
(EX a s Y. f = ([Ev a]t @t s, Y) & (s,Y) :f [[Pf a]]F ev & a : X) } : domF"
apply (simp add: domF_def HC_F2_def)
apply (intro allI impI)
apply (elim conjE disjE, force)
apply (elim conjE exE, simp)
apply (rule_tac x="a" in exI)
apply (rule_tac x="sa" in exI, simp)
apply (rule memF_F2, simp_all)
done
(*** Ext_pre_choice_memT ***)
lemma Ext_pre_choice_memF:
"(f :f [[? :X -> Pf]]F ev) =
((EX Y. f = ([]t,Y) & Ev`X Int Y = {}) |
(EX a s Y. f = ([Ev a]t @t s, Y) & (s,Y) :f [[Pf a]]F ev & a : X))"
apply (simp add: evalF_def)
by (simp add: memF_def Abs_domF_inverse Ext_pre_choice_domF[simplified memF_def])
lemmas Ext_pre_choice_mem = Ext_pre_choice_memT Ext_pre_choice_memF
(*******************************
domSF
*******************************)
(* T2 *)
lemma Ext_pre_choice_T2 :
"ALL a. ([[Pf a]]T ev, [[Pf a]]F ev) : domSF
==> HC_T2 ([[? :X -> Pf]]T ev, [[? :X -> Pf]]F ev)"
apply (simp add: HC_T2_def Ext_pre_choice_mem)
apply (intro allI impI)
apply (elim conjE exE, simp)
apply (rule_tac x="a" in exI)
apply (rule_tac x="sa" in exI, simp)
apply (drule_tac x="a" in spec)
apply (simp add: domSF_def HC_T2_def)
apply (elim conjE)
apply (drule_tac x="sa" in spec)
by (force)
(* F3 *)
lemma Ext_pre_choice_F3 :
"ALL a. ([[Pf a]]T ev, [[Pf a]]F ev) : domSF
==> HC_F3 ([[? :X -> Pf]]T ev, [[? :X -> Pf]]F ev)"
apply (simp add: HC_F3_def Ext_pre_choice_mem)
apply (intro allI impI)
apply (elim conjE disjE, simp)
(* s = []t *)
apply (case_tac "EX a. Ev a :Ev ` X Int (Xa Un Y)") (* show contradiction" *)
apply (elim conjE exE)
apply (drule_tac x="Ev a" in spec)
apply (drule mp)
apply (simp) (* show "Ev a : Y" *)
apply (elim conjE disjE)
apply (fast) (* contradict *)
apply (simp)
apply (drule_tac x="a" in spec)
apply (drule_tac x="a" in spec)
apply (simp)
apply (drule_tac x="s" in spec)
apply (simp)
apply (fast) (* contradict *)
apply (fast) (* Ev ` X Int (Xa Un Y) = {} *)
(* s ~= []t *)
apply (elim conjE exE, simp)
apply (rule_tac x="a" in exI)
apply (rule_tac x="sa" in exI)
apply (simp)
apply (drule_tac x="a" in spec)
apply (simp add: domSF_def HC_F3_def)
apply (elim conjE)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="Xa" in spec)
apply (drule_tac x="Y" in spec)
apply (simp)
apply (drule mp)
apply (intro allI impI)
apply (drule_tac x="aa" in spec, simp)
apply (drule_tac x="a" in spec)
apply (drule_tac x="sa @t [aa]t" in spec, simp)
by (simp)
(* T3_F4 *)
lemma Ext_pre_choice_T3_F4 :
"ALL a. ([[Pf a]]T ev, [[Pf a]]F ev) : domSF
==> HC_T3_F4 ([[? :X -> Pf]]T ev, [[? :X -> Pf]]F ev)"
apply (simp add: HC_T3_F4_def Ext_pre_choice_mem)
apply (intro allI impI)
apply (elim conjE exE)
apply (insert trace_nil_or_Tick_or_Ev)
apply (drule_tac x="s" in spec)
apply (simp add: not_None)
apply (erule disjE, simp) (* s = []t --> contradict *)
apply (erule disjE, simp) (* s = [Tick]t --> contradict *)
apply (elim conjE exE) (* s = [Ev aa]t @t sb *)
apply (simp add: not_None)
apply (drule_tac x="a" in spec)
apply (simp add: domSF_iff HC_T3_F4_def)
apply (elim conjE exE)
apply (drule_tac x="sb" in spec)
by (simp)
(*** Ext_pre_choice_domSF ***)
lemma Ext_pre_choice_domSF :
"ALL a. ([[Pf a]]T ev, [[Pf a]]F ev) : domSF
==> ([[? :X -> Pf]]T ev, [[? :X -> Pf]]F ev) : domSF"
apply (simp (no_asm) add: domSF_iff)
apply (simp add: Ext_pre_choice_T2)
apply (simp add: Ext_pre_choice_F3)
apply (simp add: Ext_pre_choice_T3_F4)
done
(*********************************************************
mono
*********************************************************)
(*** T ***)
lemma Ext_pre_choice_evalT_mono:
"ALL a:X. [[Pf a]]T ev1 <= [[Qf a]]T ev2
==> [[? :X -> Pf]]T ev1 <= [[? :X -> Qf]]T ev2"
apply (simp add: subsetT_iff)
apply (intro allI impI)
apply (simp add: Ext_pre_choice_memT)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (drule_tac x="a" in bspec, simp)
apply (drule_tac x="s" in spec, simp)
apply (rule_tac x="a" in exI)
apply (rule_tac x="s" in exI)
by (simp)
(*** F ***)
lemma Ext_pre_choice_evalF_mono:
"ALL a:X. [[Pf a]]F ev1 <= [[Qf a]]F ev2
==> [[? :X -> Pf]]F ev1 <= [[? :X -> Qf]]F ev2"
apply (simp add: subsetF_iff)
apply (intro allI impI)
apply (simp add: Ext_pre_choice_memF)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (drule_tac x="a" in bspec, simp)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="Xa" in spec)
apply (simp)
apply (rule_tac x="a" in exI)
apply (rule_tac x="sa" in exI)
by (simp)
(****************** to add them again ******************)
declare disj_not1 [simp]
declare not_None_eq [simp]
end
lemma Ext_pre_choice_domT:
{t. t = []t ∨ (∃a s. t = [Ev a]t @t s ∧ s :t [[Pf a]]T ev ∧ a ∈ X)} ∈ domT
lemma Ext_pre_choice_memT:
(t :t [[? :X -> Pf]]T ev) = (t = []t ∨ (∃a s. t = [Ev a]t @t s ∧ s :t [[Pf a]]T ev ∧ a ∈ X))
lemma Ext_pre_choice_domF:
{f. (∃Y. f = ([]t, Y) ∧ Ev ` X ∩ Y = {}) ∨
(∃a s Y. f = ([Ev a]t @t s, Y) ∧ (s, Y) :f [[Pf a]]F ev ∧ a ∈ X)}
∈ domF
lemma Ext_pre_choice_memF:
(f :f [[? :X -> Pf]]F ev) = ((∃Y. f = ([]t, Y) ∧ Ev ` X ∩ Y = {}) ∨ (∃a s Y. f = ([Ev a]t @t s, Y) ∧ (s, Y) :f [[Pf a]]F ev ∧ a ∈ X))
lemmas Ext_pre_choice_mem:
(t :t [[? :X -> Pf]]T ev) = (t = []t ∨ (∃a s. t = [Ev a]t @t s ∧ s :t [[Pf a]]T ev ∧ a ∈ X))
(f :f [[? :X -> Pf]]F ev) = ((∃Y. f = ([]t, Y) ∧ Ev ` X ∩ Y = {}) ∨ (∃a s Y. f = ([Ev a]t @t s, Y) ∧ (s, Y) :f [[Pf a]]F ev ∧ a ∈ X))
lemma Ext_pre_choice_T2:
∀a. ([[Pf a]]T ev, [[Pf a]]F ev) ∈ domSF ==> HC_T2 ([[? :X -> Pf]]T ev, [[? :X -> Pf]]F ev)
lemma Ext_pre_choice_F3:
∀a. ([[Pf a]]T ev, [[Pf a]]F ev) ∈ domSF ==> HC_F3 ([[? :X -> Pf]]T ev, [[? :X -> Pf]]F ev)
lemma Ext_pre_choice_T3_F4:
∀a. ([[Pf a]]T ev, [[Pf a]]F ev) ∈ domSF ==> HC_T3_F4 ([[? :X -> Pf]]T ev, [[? :X -> Pf]]F ev)
lemma Ext_pre_choice_domSF:
∀a. ([[Pf a]]T ev, [[Pf a]]F ev) ∈ domSF ==> ([[? :X -> Pf]]T ev, [[? :X -> Pf]]F ev) ∈ domSF
lemma Ext_pre_choice_evalT_mono:
∀a∈X. [[Pf a]]T ev1 ≤ [[Qf a]]T ev2 ==> [[? :X -> Pf]]T ev1 ≤ [[? :X -> Qf]]T ev2
lemma Ext_pre_choice_evalF_mono:
∀a∈X. [[Pf a]]F ev1 ≤ [[Qf a]]F ev2 ==> [[? :X -> Pf]]F ev1 ≤ [[? :X -> Qf]]F ev2