Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | June 2005 (modified) | | September 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | April 2006 (modified) | | March 2007 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_T_law imports CSP_T_law_SKIP CSP_T_law_ref CSP_T_law_dist CSP_T_law_alpha_par CSP_T_law_step CSP_T_law_rep_par CSP_T_law_fix CSP_T_law_DIV CSP_T_law_SKIP_DIV CSP_T_law_step_ext CSP_T_law_norm begin (*-----------------------------------------------------------* | | | Ext_choice_Int_choice | | | | These rules show the difference between models T and F. | | | *-----------------------------------------------------------*) lemma cspT_Ext_choice_Int_choice: "P1 [+] P2 =T[M,M] P1 |~| P2" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces)+ done lemma cspT_Ext_pre_choice_Rep_int_choice: "? :X -> Pf =T[M,M] ! x:X .. x -> Pf x" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces) apply (force) apply (rule, simp add: in_traces) apply (force) done lemmas cspT_Ext_Int = cspT_Ext_choice_Int_choice cspT_Ext_pre_choice_Rep_int_choice (********************************************************* SKIP , DIV and Internal choice *********************************************************) (*** |~| ***) lemma cspT_SKIP_DIV_Int_choice: "[| P = SKIP | P = DIV ; Q = SKIP | Q = DIV |] ==> (P |~| Q) =T[M1,M2] (if (P = SKIP | Q = SKIP) then SKIP else DIV)" apply (elim disjE) apply (simp_all) apply (rule cspT_rw_left) apply (rule cspT_idem) apply (rule cspT_reflex) apply (rule cspT_rw_left) apply (rule cspT_unit) apply (rule cspT_reflex) apply (rule cspT_rw_left) apply (rule cspT_unit) apply (rule cspT_reflex) apply (rule cspT_rw_left) apply (rule cspT_idem) apply (rule cspT_reflex) done (*** !! ***) lemma cspT_SKIP_DIV_Rep_int_choice_sum: "[| ALL c: sumset C. (Qf c = SKIP | Qf c = DIV) |] ==> (!! c:C .. Qf c) =T[M1,M2] (if (EX c: sumset C. Qf c = SKIP) then SKIP else DIV)" apply (case_tac " sumset C={}") apply (simp add: cspT_Rep_int_choice_empty) apply (case_tac "ALL c: sumset C. Qf c = DIV") apply (simp) apply (rule cspT_rw_left) apply (rule cspT_Rep_int_choice_const) apply (simp) apply (force) apply (simp) apply (simp) apply (elim bexE) apply (frule_tac x="c" in bspec) apply (simp_all) apply (intro conjI impI) apply (rule cspT_rw_left) apply (subgoal_tac "!! :C .. Qf =T[M1,M1] !! :({c:C. Qf c = SKIP}s Uns {c:C. Qf c ~= SKIP}s) .. Qf") apply (simp (no_asm)) apply (rule cspT_decompo) apply (simp) apply (simp) apply (rule cspT_rw_left) apply (rule cspT_Rep_int_choice_union_Int) apply (simp) apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (rule cspT_Rep_int_choice_const) apply (force) apply (rule ballI) apply (simp) apply (case_tac " sumset ({c:C. Qf c ~= SKIP}s) ={}") apply (rule cspT_Rep_int_choice_DIV) apply (simp) apply (rule cspT_rw_left) apply (rule cspT_Rep_int_choice_const) apply (simp_all) apply (intro allI impI) apply (subgoal_tac "Qf ca = DIV") apply (simp) apply (force) apply (simp) apply (rule cspT_rw_left) apply (rule cspT_unit) apply (simp) done lemma cspT_SKIP_DIV_Rep_int_choice_nat: "[| ALL n:N. (Qf n = SKIP | Qf n = DIV) |] ==> (!nat n:N .. Qf n) =T[M1,M2] (if (EX n:N. Qf n = SKIP) then SKIP else DIV)" apply (unfold Rep_int_choice_ss_def) apply (rule cspT_rw_left) apply (rule cspT_SKIP_DIV_Rep_int_choice_sum) apply (auto) done lemma cspT_SKIP_DIV_Rep_int_choice_set: "[| ALL X:Xs. (Qf X = SKIP | Qf X = DIV) |] ==> (!set X:Xs .. Qf X) =T[M1,M2] (if (EX X:Xs. Qf X = SKIP) then SKIP else DIV)" apply (unfold Rep_int_choice_ss_def) apply (rule cspT_rw_left) apply (rule cspT_SKIP_DIV_Rep_int_choice_sum) apply (auto) done lemmas cspT_SKIP_DIV_Rep_int_choice = cspT_SKIP_DIV_Rep_int_choice_sum cspT_SKIP_DIV_Rep_int_choice_nat cspT_SKIP_DIV_Rep_int_choice_set end
lemma cspT_Ext_choice_Int_choice:
P1.0 [+] P2.0 =T[M,M] P1.0 |~| P2.0
lemma cspT_Ext_pre_choice_Rep_int_choice:
? :X -> Pf =T[M,M] ! x:X .. x -> Pf x
lemmas cspT_Ext_Int:
P1.0 [+] P2.0 =T[M,M] P1.0 |~| P2.0
? :X -> Pf =T[M,M] ! x:X .. x -> Pf x
lemmas cspT_Ext_Int:
P1.0 [+] P2.0 =T[M,M] P1.0 |~| P2.0
? :X -> Pf =T[M,M] ! x:X .. x -> Pf x
lemma cspT_SKIP_DIV_Int_choice:
[| P = SKIP ∨ P = DIV; Q = SKIP ∨ Q = DIV |] ==> P |~| Q =T[M1.0,M2.0] (if P = SKIP ∨ Q = SKIP then SKIP else DIV)
lemma cspT_SKIP_DIV_Rep_int_choice_sum:
∀c∈sumset C. Qf c = SKIP ∨ Qf c = DIV ==> !! :C .. Qf =T[M1.0,M2.0] (if ∃c∈sumset C. Qf c = SKIP then SKIP else DIV)
lemma cspT_SKIP_DIV_Rep_int_choice_nat:
∀n∈N. Qf n = SKIP ∨ Qf n = DIV ==> !nat :N .. Qf =T[M1.0,M2.0] (if ∃n∈N. Qf n = SKIP then SKIP else DIV)
lemma cspT_SKIP_DIV_Rep_int_choice_set:
∀X∈Xs. Qf X = SKIP ∨ Qf X = DIV ==> !set :Xs .. Qf =T[M1.0,M2.0] (if ∃X∈Xs. Qf X = SKIP then SKIP else DIV)
lemmas cspT_SKIP_DIV_Rep_int_choice:
∀c∈sumset C. Qf c = SKIP ∨ Qf c = DIV ==> !! :C .. Qf =T[M1.0,M2.0] (if ∃c∈sumset C. Qf c = SKIP then SKIP else DIV)
∀n∈N. Qf n = SKIP ∨ Qf n = DIV ==> !nat :N .. Qf =T[M1.0,M2.0] (if ∃n∈N. Qf n = SKIP then SKIP else DIV)
∀X∈Xs. Qf X = SKIP ∨ Qf X = DIV ==> !set :Xs .. Qf =T[M1.0,M2.0] (if ∃X∈Xs. Qf X = SKIP then SKIP else DIV)
lemmas cspT_SKIP_DIV_Rep_int_choice:
∀c∈sumset C. Qf c = SKIP ∨ Qf c = DIV ==> !! :C .. Qf =T[M1.0,M2.0] (if ∃c∈sumset C. Qf c = SKIP then SKIP else DIV)
∀n∈N. Qf n = SKIP ∨ Qf n = DIV ==> !nat :N .. Qf =T[M1.0,M2.0] (if ∃n∈N. Qf n = SKIP then SKIP else DIV)
∀X∈Xs. Qf X = SKIP ∨ Qf X = DIV ==> !set :Xs .. Qf =T[M1.0,M2.0] (if ∃X∈Xs. Qf X = SKIP then SKIP else DIV)