Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law_SKIP(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | July 2005 (modified) | | September 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | April 2006 (modified) | | March 2007 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_T_law_SKIP imports CSP_T_law_basic begin (***************************************************************** 1. SKIP |[X]| SKIP 2. SKIP |[X]| P 3. P |[X]| SKIP 4. SKIP -- X 5. SKIP [[r]] 6. SKIP ;; P 7. P ;; SKIP 8. SKIP |. n *****************************************************************) (********************************************************* SKIP |[X]| SKIP *********************************************************) lemma cspT_Parallel_term: "SKIP |[X]| SKIP =T[M1,M2] SKIP" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule) apply (simp add: in_traces) apply (elim disjE conjE exE) apply (simp_all) (* <= *) apply (rule) apply (simp add: in_traces) apply (elim disjE conjE exE) apply (simp_all) done (********************************************************* SKIP |[X]| P *********************************************************) lemma cspT_Parallel_preterm_l: "SKIP |[X]| (? :Y -> Qf) =T[M,M] ? x:(Y-X) -> (SKIP |[X]| Qf x)" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule) apply (simp add: in_traces) apply (insert trace_nil_or_Tick_or_Ev) apply (elim disjE conjE exE) apply (simp_all) apply (drule_tac x="t" in spec) apply (erule disjE, simp) apply (erule disjE, simp) apply (elim conjE exE, simp) apply (simp add: par_tr_head) apply (rule_tac x="<>" in exI) apply (rule_tac x="sa" in exI, simp) apply (drule_tac x="t" in spec) apply (erule disjE, simp) apply (erule disjE, simp) apply (elim conjE exE, simp) apply (simp add: par_tr_head) apply (rule_tac x="<Tick>" in exI) apply (rule_tac x="sa" in exI, simp) (* <= *) apply (rule) apply (simp add: in_traces) apply (elim disjE conjE exE) apply (simp_all) apply (rule_tac x="<>" in exI) apply (rule_tac x="<Ev a> ^^ ta" in exI, simp) apply (simp add: par_tr_head) apply (rule_tac x="<Tick>" in exI) apply (rule_tac x="<Ev a> ^^ ta" in exI, simp) apply (simp add: par_tr_head) done (********************************************************* P |[X]| SKIP *********************************************************) lemma cspT_Parallel_preterm_r: "(? :Y -> Pf) |[X]| SKIP =T[M,M] ? x:(Y-X) -> (Pf x |[X]| SKIP)" apply (rule cspT_trans) apply (rule cspT_Parallel_commut) apply (rule cspT_trans) apply (rule cspT_Parallel_preterm_l) apply (rule cspT_rm_head, simp) apply (rule cspT_Parallel_commut) done lemmas cspT_Parallel_preterm = cspT_Parallel_preterm_l cspT_Parallel_preterm_r (********************************************************* SKIP and Parallel *********************************************************) (* p.288 *) lemma cspT_SKIP_Parallel_Ext_choice_SKIP_l: "((? :Y -> Pf) [+] SKIP) |[X]| SKIP =T[M,M] (? x:(Y - X) -> (Pf x |[X]| SKIP)) [+] SKIP" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule, simp add: in_traces) apply (elim conjE exE disjE) apply (simp_all) apply (rule disjI2) apply (rule disjI1) apply (simp add: par_tr_nil_right) apply (elim conjE) apply (simp add: image_iff) apply (rule_tac x="sa" in exI) apply (rule_tac x="<>" in exI) apply (simp add: par_tr_nil_right) apply (rule disjI2) apply (rule disjI1) apply (simp add: par_tr_Tick_right) apply (elim conjE) apply (simp add: image_iff) apply (rule_tac x="sa" in exI) apply (rule_tac x="<Tick>" in exI) apply (simp add: par_tr_Tick_right) (* <= *) apply (rule, simp add: in_traces) apply (elim conjE exE disjE) apply (simp_all) apply (simp add: par_tr_nil_right) apply (elim conjE) apply (rule_tac x="<Ev a> ^^ sa" in exI) apply (rule_tac x="<>" in exI) apply (simp add: par_tr_nil_right) apply (simp add: image_iff) apply (simp add: par_tr_Tick_right) apply (elim conjE) apply (rule_tac x="<Ev a> ^^ sa" in exI) apply (rule_tac x="<Tick>" in exI) apply (simp add: par_tr_Tick_right) apply (simp add: image_iff) done lemma cspT_SKIP_Parallel_Ext_choice_SKIP_r: "SKIP |[X]| ((? :Y -> Pf) [+] SKIP) =T[M,M] (? x:(Y - X) -> (SKIP |[X]| Pf x)) [+] SKIP" apply (rule cspT_rw_left) apply (rule cspT_commut) apply (rule cspT_rw_left) apply (rule cspT_SKIP_Parallel_Ext_choice_SKIP_l) apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (rule cspT_decompo) apply (simp) apply (rule cspT_commut) apply (rule cspT_reflex) apply (rule cspT_reflex) done lemmas cspT_SKIP_Parallel_Ext_choice_SKIP = cspT_SKIP_Parallel_Ext_choice_SKIP_l cspT_SKIP_Parallel_Ext_choice_SKIP_r (********************************************************* SKIP -- X *********************************************************) lemma cspT_SKIP_Hiding_Id: "SKIP -- X =T[M1,M2] SKIP" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule) apply (simp add: in_traces) apply (elim disjE conjE exE) apply (simp_all) (* <= *) apply (rule) apply (simp add: in_traces) apply (elim disjE conjE exE) apply (simp_all) apply (rule_tac x="<>" in exI) apply (simp) apply (rule_tac x="<Tick>" in exI) apply (simp) done (********************************************************* SKIP and Hiding *********************************************************) (* p.288 version "((? :Y -> Pf) [+] SKIP) -- X =T[M1,M2] IF (Y Int X = {}) THEN ((? x:Y -> (Pf x -- X)) [+] SKIP) ELSE (((? x:(Y-X) -> (Pf x -- X)) [+] SKIP) |~| (! x:(Y Int X) .. (Pf x -- X)))" *) lemma cspT_SKIP_Hiding_step: "((? :Y -> Pf) [+] SKIP) -- X =T[M,M] ((? x:(Y-X) -> (Pf x -- X)) [+] SKIP) |~| (! x:(Y Int X) .. (Pf x -- X))" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule, simp add: in_traces) apply (elim conjE exE disjE) apply (simp_all) apply (case_tac "a : X", force) apply (force) (* <= *) apply (rule) apply (simp add: in_traces) apply (elim conjE exE bexE disjE) apply (simp_all) apply (force) apply (rule_tac x="<Ev a> ^^ sa" in exI) apply (simp) apply (force) apply (rule_tac x="<Tick>" in exI) apply (simp) apply (force) apply (rule_tac x="<Ev a> ^^ s" in exI) apply (simp) done (********************************************************* SKIP [[r]] *********************************************************) lemma cspT_SKIP_Renaming_Id: "SKIP [[r]] =T[M1,M2] SKIP" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule) apply (simp add: in_traces) apply (force) (* <= *) apply (rule) apply (simp add: in_traces) apply (force) done (********************************************************* SKIP ;; P *********************************************************) lemma cspT_Seq_compo_unit_l: "SKIP ;; P =T[M,M] P" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule, simp add: in_traces) apply (force) (* <= *) apply (rule, simp add: in_traces) apply (rule disjI2) apply (rule_tac x="<>" in exI) apply (rule_tac x="t" in exI) apply (simp) done (********************************************************* P ;; SKIP *********************************************************) lemma cspT_Seq_compo_unit_r: "P ;; SKIP =T[M,M] P" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule, simp add: in_traces) apply (elim conjE exE disjE) apply (simp_all) apply (rule memT_prefix_closed, simp) apply (simp add: rmTick_prefix_rev) apply (rule memT_prefix_closed, simp, simp) (* <= *) apply (rule, simp add: in_traces) apply (insert trace_last_noTick_or_Tick) apply (drule_tac x="t" in spec) apply (erule disjE) apply (rule disjI1) apply (rule_tac x="t" in exI, simp) (* *) apply (rule disjI2) apply (elim conjE exE) apply (rule_tac x="s" in exI) apply (rule_tac x="<Tick>" in exI) apply (simp) done lemmas cspT_Seq_compo_unit = cspT_Seq_compo_unit_l cspT_Seq_compo_unit_r (********************************************************* SKIP and Sequential composition *********************************************************) (* p.141 *) lemma cspT_SKIP_Seq_compo_step: "((? :X -> Pf) [> SKIP) ;; Q =T[M,M] (? x:X -> (Pf x ;; Q)) [> Q" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule, simp add: in_traces) apply (elim conjE exE disjE) apply (simp_all) apply (rule disjI1) apply (fast) apply (rule disjI2) apply (rule disjI1) apply (insert trace_nil_or_Tick_or_Ev) apply (drule_tac x="s" in spec) apply (elim disjE conjE exE) apply (simp_all) apply (simp add: appt_assoc) apply (rule disjI2) apply (rule_tac x="sb" in exI) apply (rule_tac x="ta" in exI) apply (simp) (* <= *) apply (rule, simp add: in_traces) apply (elim conjE exE disjE) apply (simp_all) apply (rule disjI1) apply (rule_tac x="<>" in exI) apply (simp) apply (rule disjI1) apply (rule_tac x="<Ev a> ^^ sa" in exI) apply (simp) apply (rule disjI2) apply (rule_tac x="<Ev a> ^^ sa" in exI) apply (rule_tac x="ta" in exI) apply (simp add: appt_assoc) apply (rule disjI1) apply (rule_tac x="<>" in exI) apply (simp) apply (rule disjI2) apply (rule_tac x="<>" in exI) apply (rule_tac x="t" in exI) apply (simp) done (********************************************************* SKIP |. n *********************************************************) lemma cspT_SKIP_Depth_rest: "SKIP |. (Suc n) =T[M1,M2] SKIP" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule) apply (simp add: in_traces) (* <= *) apply (rule) apply (simp add: in_traces) apply (force) done (********************************************************* cspT_SKIP *********************************************************) lemmas cspT_SKIP = cspT_Parallel_term cspT_Parallel_preterm cspT_SKIP_Parallel_Ext_choice_SKIP cspT_SKIP_Hiding_Id cspT_SKIP_Hiding_step cspT_SKIP_Renaming_Id cspT_Seq_compo_unit cspT_SKIP_Seq_compo_step cspT_SKIP_Depth_rest (********************************************************* P [+] SKIP *********************************************************) (* p.141 *) lemma cspT_Ext_choice_SKIP_resolve: "P [+] SKIP =T[M,M] P [> SKIP" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule, simp add: in_traces) (* <= *) apply (rule, simp add: in_traces) done lemma cspT_Ext_choice_SKIP_resolve_sym: "P [> SKIP =T[M,M] P [+] SKIP" apply (rule cspT_sym) apply (simp add: cspT_Ext_choice_SKIP_resolve) done end
lemma cspT_Parallel_term:
SKIP |[X]| SKIP =T[M1.0,M2.0] SKIP
lemma cspT_Parallel_preterm_l:
SKIP |[X]| ? :Y -> Qf =T[M,M] ? x:(Y - X) -> (SKIP |[X]| Qf x)
lemma cspT_Parallel_preterm_r:
? :Y -> Pf |[X]| SKIP =T[M,M] ? x:(Y - X) -> (Pf x |[X]| SKIP)
lemmas cspT_Parallel_preterm:
SKIP |[X]| ? :Y -> Qf =T[M,M] ? x:(Y - X) -> (SKIP |[X]| Qf x)
? :Y -> Pf |[X]| SKIP =T[M,M] ? x:(Y - X) -> (Pf x |[X]| SKIP)
lemmas cspT_Parallel_preterm:
SKIP |[X]| ? :Y -> Qf =T[M,M] ? x:(Y - X) -> (SKIP |[X]| Qf x)
? :Y -> Pf |[X]| SKIP =T[M,M] ? x:(Y - X) -> (Pf x |[X]| SKIP)
lemma cspT_SKIP_Parallel_Ext_choice_SKIP_l:
(? :Y -> Pf [+] SKIP) |[X]| SKIP =T[M,M] ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] SKIP
lemma cspT_SKIP_Parallel_Ext_choice_SKIP_r:
SKIP |[X]| (? :Y -> Pf [+] SKIP) =T[M,M] ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] SKIP
lemmas cspT_SKIP_Parallel_Ext_choice_SKIP:
(? :Y -> Pf [+] SKIP) |[X]| SKIP =T[M,M] ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] SKIP
SKIP |[X]| (? :Y -> Pf [+] SKIP) =T[M,M] ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] SKIP
lemmas cspT_SKIP_Parallel_Ext_choice_SKIP:
(? :Y -> Pf [+] SKIP) |[X]| SKIP =T[M,M] ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] SKIP
SKIP |[X]| (? :Y -> Pf [+] SKIP) =T[M,M] ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] SKIP
lemma cspT_SKIP_Hiding_Id:
SKIP -- X =T[M1.0,M2.0] SKIP
lemma cspT_SKIP_Hiding_step:
(? :Y -> Pf [+] SKIP) -- X =T[M,M] ? x:(Y - X) -> Pf x -- X [+] SKIP |~| ! x:(Y ∩ X) .. Pf x -- X
lemma cspT_SKIP_Renaming_Id:
SKIP [[r]] =T[M1.0,M2.0] SKIP
lemma cspT_Seq_compo_unit_l:
SKIP ;; P =T[M,M] P
lemma cspT_Seq_compo_unit_r:
P ;; SKIP =T[M,M] P
lemmas cspT_Seq_compo_unit:
SKIP ;; P =T[M,M] P
P ;; SKIP =T[M,M] P
lemmas cspT_Seq_compo_unit:
SKIP ;; P =T[M,M] P
P ;; SKIP =T[M,M] P
lemma cspT_SKIP_Seq_compo_step:
(? :X -> Pf [> SKIP) ;; Q =T[M,M] ? x:X -> (Pf x ;; Q) [> Q
lemma cspT_SKIP_Depth_rest:
SKIP |. Suc n =T[M1.0,M2.0] SKIP
lemmas cspT_SKIP:
SKIP |[X]| SKIP =T[M1.0,M2.0] SKIP
SKIP |[X]| ? :Y -> Qf =T[M,M] ? x:(Y - X) -> (SKIP |[X]| Qf x)
? :Y -> Pf |[X]| SKIP =T[M,M] ? x:(Y - X) -> (Pf x |[X]| SKIP)
(? :Y -> Pf [+] SKIP) |[X]| SKIP =T[M,M] ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] SKIP
SKIP |[X]| (? :Y -> Pf [+] SKIP) =T[M,M] ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] SKIP
SKIP -- X =T[M1.0,M2.0] SKIP
(? :Y -> Pf [+] SKIP) -- X =T[M,M] ? x:(Y - X) -> Pf x -- X [+] SKIP |~| ! x:(Y ∩ X) .. Pf x -- X
SKIP [[r]] =T[M1.0,M2.0] SKIP
SKIP ;; P =T[M,M] P
P ;; SKIP =T[M,M] P
(? :X -> Pf [> SKIP) ;; Q =T[M,M] ? x:X -> (Pf x ;; Q) [> Q
SKIP |. Suc n =T[M1.0,M2.0] SKIP
lemmas cspT_SKIP:
SKIP |[X]| SKIP =T[M1.0,M2.0] SKIP
SKIP |[X]| ? :Y -> Qf =T[M,M] ? x:(Y - X) -> (SKIP |[X]| Qf x)
? :Y -> Pf |[X]| SKIP =T[M,M] ? x:(Y - X) -> (Pf x |[X]| SKIP)
(? :Y -> Pf [+] SKIP) |[X]| SKIP =T[M,M] ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] SKIP
SKIP |[X]| (? :Y -> Pf [+] SKIP) =T[M,M] ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] SKIP
SKIP -- X =T[M1.0,M2.0] SKIP
(? :Y -> Pf [+] SKIP) -- X =T[M,M] ? x:(Y - X) -> Pf x -- X [+] SKIP |~| ! x:(Y ∩ X) .. Pf x -- X
SKIP [[r]] =T[M1.0,M2.0] SKIP
SKIP ;; P =T[M,M] P
P ;; SKIP =T[M,M] P
(? :X -> Pf [> SKIP) ;; Q =T[M,M] ? x:X -> (Pf x ;; Q) [> Q
SKIP |. Suc n =T[M1.0,M2.0] SKIP
lemma cspT_Ext_choice_SKIP_resolve:
P [+] SKIP =T[M,M] P [> SKIP
lemma cspT_Ext_choice_SKIP_resolve_sym:
P [> SKIP =T[M,M] P [+] SKIP