Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law_rep_par (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| May 2005 |
| June 2005 (modified) |
| September 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| October 2005 (modified) |
| March 2007 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_T_law_rep_par
imports CSP_T_law_alpha_par CSP_T_op_rep_par
begin
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* Union (B ` A) = (UN x:A. B x) *)
(* Inter (B ` A) = (INT x:A. B x) *)
declare Union_image_eq [simp del]
declare Inter_image_eq [simp del]
(*****************************************************************
1. associativity of [||]:I
2. commutativity of [||]:I
3.
4.
*****************************************************************)
(*****************************************************
replace an index set with another equal index set
*****************************************************)
(*------------------*
| csp law |
*------------------*)
lemma cspT_Rep_parallel_index_eq:
"[| finite I1 ;
EX f. I2 = f ` I1 & inj_on f I1 &
(ALL i:I1. PXf2 (f i) = PXf1 i) |]
==> [||]:I1 PXf1 =T[M,M] [||]:I2 PXf2"
apply (simp add: cspT_semantics)
apply (case_tac "I1 = {}")
apply (simp)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (elim conjE exE)
apply (simp add: in_traces_par)
apply (subgoal_tac "Union (snd ` PXf2 ` f ` I1) = Union (snd ` PXf1 ` I1)")
apply (simp)
apply (simp add: Union_index_fun)
(* => *)
apply (rule)
apply (elim conjE exE)
apply (simp add: in_traces_par)
apply (subgoal_tac "Union (snd ` PXf2 ` f ` I1) = Union (snd ` PXf1 ` I1)")
apply (simp)
apply (simp add: Union_index_fun)
done
(*********************************************************
[||]:I PXf ==> [||] PXs
*********************************************************)
(*------------------*
| csp law |
*------------------*)
lemma cspT_Index_to_Inductive_parallel:
"[| finite I ; Is isListOf I |] ==>
[||]:I PXf =T[M,M] [||] (map PXf Is)"
apply (simp add: cspT_semantics)
apply (case_tac "I = {}")
apply (simp)
apply (case_tac "map PXf Is = []")
apply (simp)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_traces_Rep_parallel)
apply (simp add: in_traces_Inductive_parallel_nth)
apply (simp add: isListOf_set_eq)
apply (intro allI impI)
apply (elim conjE exE)
apply (drule_tac x="Is!i" in bspec)
apply (simp add: isListOf_nth_in_index)
apply (simp)
(* => *)
apply (rule)
apply (simp add: in_traces_Rep_parallel)
apply (simp add: in_traces_Inductive_parallel_nth)
apply (simp add: isListOf_set_eq)
apply (intro ballI)
apply (elim conjE)
apply (erule isListOf_index_to_nthE)
apply (drule_tac x="i" in bspec, simp)
apply (elim exE conjE)
apply (drule_tac x="n" in spec, simp)
done
(************************************
| [||]:I PXf and SKIP |
************************************)
(*------------------*
| csp law |
*------------------*)
lemma cspT_SKIP_Rep_parallel_right:
"finite I ==>
(([||]:I PXf) |[Union (snd ` PXf ` I), {}]| SKIP) =T[M,M]
([||]:I PXf)"
apply (case_tac "I={}")
apply (simp add: cspT_SKIP_Alpha_parallel)
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule)
apply (simp add: in_traces_par)
apply (intro ballI)
apply (elim conjE)
apply (drule_tac x="i" in bspec, simp)
apply (subgoal_tac "snd (PXf i) <= Union (snd ` PXf ` I)")
apply (simp add: rest_tr_of_rest_tr_subset)
apply (force)
(* <= *)
apply (rule)
apply (simp add: in_traces_par in_traces)
apply (simp add: rest_tr_empty)
apply (intro ballI)
apply (elim conjE)
apply (drule_tac x="i" in bspec, simp)
apply (subgoal_tac "snd (PXf i) <= Union (snd ` PXf ` I)")
apply (simp add: rest_tr_of_rest_tr_subset)
apply (force)
done
(************************************
| SKIP and [||]:I PXf |
************************************)
(*------------------*
| csp law |
*------------------*)
lemma cspT_SKIP_Rep_parallel_left:
"finite I ==>
(SKIP |[{}, Union (snd ` PXf ` I)]| ([||]:I PXf)) =T[M,M]
([||]:I PXf)"
apply (subgoal_tac
"(SKIP |[{}, Union (snd ` PXf ` I)]| ([||]:I PXf)) =T[M,M]
(([||]:I PXf) |[Union (snd ` PXf ` I), {}]| SKIP)")
apply (rule cspT_trans)
apply (simp)
apply (simp add: cspT_SKIP_Rep_parallel_right)
apply (simp add: cspT_Alpha_parallel_commut)
done
(*** left and right ***)
lemmas cspT_SKIP_Rep_parallel = cspT_SKIP_Rep_parallel_left
cspT_SKIP_Rep_parallel_right
(************************************
| associativity |
************************************)
(*------------------*
| csp law |
*------------------*)
lemma cspT_Rep_parallel_assoc:
"[| I1 Int I2 = {} ; finite I1 ; finite I2 |] ==>
[||]:(I1 Un I2) PXf =T[M,M]
[||]:I1 PXf |[Union (snd ` PXf ` I1), Union (snd ` PXf ` I2)]| [||]:I2 PXf"
apply (case_tac "I1 = {}")
apply (case_tac "I2 = {}")
apply (rule cspT_sym)
apply (simp add: cspT_SKIP_Alpha_parallel)
apply (rule cspT_sym)
apply (simp add: cspT_SKIP_Rep_parallel)
apply (case_tac "I2 = {}")
apply (rule cspT_sym)
apply (simp add: cspT_SKIP_Rep_parallel)
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* => *)
apply (rule)
apply (simp add: in_traces_par)
apply (simp add: Union_snd_Un)
apply (elim conjE)
apply (rule conjI)
apply (intro ballI)
apply (drule_tac x="i" in bspec, simp)
apply (subgoal_tac "snd (PXf i) <= Union (snd ` PXf ` I1)")
apply (simp add: rest_tr_of_rest_tr_subset)
apply (force)
apply (intro ballI)
apply (drule_tac x="i" in bspec, simp)
apply (subgoal_tac "snd (PXf i) <= Union (snd ` PXf ` I2)")
apply (simp add: rest_tr_of_rest_tr_subset)
apply (force)
(* <= *)
apply (rule)
apply (simp add: in_traces_par)
apply (simp add: Union_snd_Un)
apply (elim conjE)
apply (intro ballI)
apply (simp)
apply (erule disjE)
apply (drule_tac x="i" in bspec, simp)
apply (subgoal_tac "snd (PXf i) <= Union (snd ` PXf ` I1)")
apply (simp add: rest_tr_of_rest_tr_subset)
apply (force)
apply (drule_tac x="i" in bspec, simp)
apply (subgoal_tac "snd (PXf i) <= Union (snd ` PXf ` I2)")
apply (simp add: rest_tr_of_rest_tr_subset)
apply (force)
done
(************************************
| induct |
************************************)
(*------------------*
| csp law |
| (derivable) |
*------------------*)
lemma cspT_Rep_parallel_induct:
"[| finite I ; i ~: I |] ==>
[||]:(insert i I) PXf =T[M,M]
fst (PXf i) |[snd (PXf i), Union (snd ` PXf ` I)]| [||]:I PXf"
apply (insert cspT_Rep_parallel_assoc[of "{i}" I PXf M])
apply (simp add: Rep_parallel_one)
apply (rule cspT_trans)
apply (simp)
apply (insert cspT_Alpha_parallel_assoc
[of "fst (PXf i)" "snd (PXf i)" "{}" "SKIP" "Union (snd ` PXf ` I)" "[||]:I PXf" M])
apply (rule cspT_trans)
apply (simp)
apply (rule cspT_decompo_Alpha_parallel)
apply (simp_all)
apply (simp add: cspT_SKIP_Rep_parallel)
done
(****************** to add them again ******************)
declare Union_image_eq [simp]
declare Inter_image_eq [simp]
end
lemma cspT_Rep_parallel_index_eq:
[| finite I1.0; ∃f. I2.0 = f ` I1.0 ∧ inj_on f I1.0 ∧ (∀i∈I1.0. PXf2.0 (f i) = PXf1.0 i) |] ==> [||]:I1.0 PXf1.0 =T[M,M] [||]:I2.0 PXf2.0
lemma cspT_Index_to_Inductive_parallel:
[| finite I; Is isListOf I |] ==> [||]:I PXf =T[M,M] [||] map PXf Is
lemma cspT_SKIP_Rep_parallel_right:
finite I ==> [||]:I PXf |[Union (snd ` PXf ` I),{}]| SKIP =T[M,M] [||]:I PXf
lemma cspT_SKIP_Rep_parallel_left:
finite I ==> SKIP |[{},Union (snd ` PXf ` I)]| [||]:I PXf =T[M,M] [||]:I PXf
lemmas cspT_SKIP_Rep_parallel:
finite I ==> SKIP |[{},Union (snd ` PXf ` I)]| [||]:I PXf =T[M,M] [||]:I PXf
finite I ==> [||]:I PXf |[Union (snd ` PXf ` I),{}]| SKIP =T[M,M] [||]:I PXf
lemmas cspT_SKIP_Rep_parallel:
finite I ==> SKIP |[{},Union (snd ` PXf ` I)]| [||]:I PXf =T[M,M] [||]:I PXf
finite I ==> [||]:I PXf |[Union (snd ` PXf ` I),{}]| SKIP =T[M,M] [||]:I PXf
lemma cspT_Rep_parallel_assoc:
[| I1.0 ∩ I2.0 = {}; finite I1.0; finite I2.0 |] ==> [||]:(I1.0 ∪ I2.0) PXf =T[M,M] [||]:I1.0 PXf |[Union (snd ` PXf ` I1.0),Union (snd ` PXf ` I2.0)]| [||]:I2.0 PXf
lemma cspT_Rep_parallel_induct:
[| finite I; i ∉ I |] ==> [||]:insert i I PXf =T[M,M] fst (PXf i) |[snd (PXf i),Union (snd ` PXf ` I)]| [||]:I PXf