Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_law_ufp (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| February 2005 |
| June 2005 (modified) |
| August 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| October 2005 (modified) |
| April 2006 (modified) |
| March 2007 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_F_law_ufp
imports CSP_F_continuous CSP_F_contraction CSP_F_mono
CSP_F_law_decompo CSP_T_law_ufp
begin
(*****************************************************************
1. cms fixed point theory in CSP-Prover
2.
3.
4.
*****************************************************************)
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* Union (B ` A) = (UN x:A. B x) *)
(* Inter (B ` A) = (INT x:A. B x) *)
declare Union_image_eq [simp del]
declare Inter_image_eq [simp del]
(*=======================================================*
| |
| CMS |
| |
*=======================================================*)
(*-------------*
| existency |
*-------------*)
lemma semF_hasUFP_cms:
"[| Pf = PNfun ; guardedfun (Pf) |]
==> [[Pf]]Ffun hasUFP"
apply (rule Banach_thm_EX)
apply (rule contraction_semFfun)
apply (simp)
done
lemma semF_UFP_cms:
"[| Pf = PNfun ;
guardedfun (Pf) ;
FPmode = CMSmode |]
==> [[$p]]F = UFP [[Pf]]Ffun p"
apply (simp add: semF_def)
apply (simp add: semFf_Proc_name)
apply (simp add: MF_def)
apply (simp add: semFfix_def)
done
lemma semF_UFP_fun_cms:
"[| Pf = PNfun ;
guardedfun (Pf) ;
FPmode = CMSmode |]
==> (%p. [[$p]]F) = UFP [[Pf]]Ffun"
apply (simp (no_asm) add: expand_fun_eq)
apply (simp add: semF_UFP_cms)
done
(*---------*
| MF |
*---------*)
lemma MF_fixed_point_cms:
"[| (Pf::'p=>('p,'a) proc) = PNfun; guardedfun Pf ; FPmode = CMSmode|]
==> [[Pf]]Ffun (MF::'p => 'a domF) = (MF::'p => 'a domF)"
apply (simp add: MF_def)
apply (simp add: semFfix_def)
apply (rule UFP_fp)
apply (simp add: semF_hasUFP_cms)
done
(*---------*
| unique |
*---------*)
lemma ALL_cspF_unique_cms:
"[| Pf = PNfun ; guardedfun Pf ;
FPmode = CMSmode ;
ALL p. (Pf p) << f =F f p |] ==> ALL p. f p =F $p"
apply (simp add: eqF_def)
apply (simp add: expand_fun_eq[THEN sym])
apply (rule hasUFP_unique_solution[of "[[PNfun]]Ffun"])
apply (simp add: semF_hasUFP_cms)
apply (fold semF_def)
apply (simp add: semF_subst)
apply (simp add: semFfun_def)
apply (simp add: semF_UFP_fun_cms)
apply (simp add: UFP_fp semF_hasUFP_cms)
done
lemma cspF_unique_cms:
"[| Pf = PNfun ; guardedfun Pf ;
FPmode = CMSmode ;
ALL p. (Pf p) << f =F f p |] ==> f p =F $p"
by (simp add: ALL_cspF_unique_cms)
(*-------------------------------------------------------*
| |
| Fixpoint unwind (CSP-Prover rule) |
| |
*-------------------------------------------------------*)
lemma ALL_cspF_unwind_cms:
"[| Pf = PNfun ;
guardedfun Pf ;
FPmode = CMSmode |]
==> ALL p. ($p =F Pf p)"
apply (simp add: eqF_def)
apply (simp add: semFf_Proc_name)
apply (simp add: MF_def)
apply (simp add: semFfix_def)
apply (simp add: expand_fun_eq[THEN sym])
apply (simp add: semFf_semFfun)
apply (simp add: UFP_fp semF_hasUFP_cms)
done
(* csp law *)
lemma cspF_unwind_cms:
"[| Pf = PNfun ;
guardedfun Pf ;
FPmode = CMSmode |]
==> $p =F Pf p"
by (simp add: ALL_cspF_unwind_cms)
(*-------------------------------------------------------*
| |
| fixed point inducntion (CSP-Prover intro rule) |
| |
*-------------------------------------------------------*)
(*----------- refinement -----------*)
(*** left ***)
lemma cspF_fp_induct_cms_ref_left_ALL:
"[| Pf = PNfun ;
guardedfun Pf ;
FPmode = CMSmode ;
f p <=F Q ;
ALL p. (Pf p)<<f <=F f p |]
==> $p <=F Q"
apply (simp add: refF_semF)
apply (insert cms_fixpoint_induction_ref
[of "[[Pf]]Ffun" "(%p. [[f p]]F)" "UFP [[Pf]]Ffun"])
apply (simp add: UFP_fp semF_hasUFP_cms)
apply (simp add: fold_order_prod_def)
apply (simp add: semF_subst_semFfun)
apply (simp add: mono_semFfun)
apply (simp add: contra_alpha_to_contst contraction_alpha_semFfun)
apply (simp add: order_prod_def)
apply (drule_tac x="p" in spec)+
apply (simp add: semF_UFP_cms)
done
(* csp law *)
lemma cspF_fp_induct_cms_ref_left:
"[| Pf = PNfun ;
guardedfun Pf ;
FPmode = CMSmode ;
f p <=F Q ;
!! p. (Pf p)<<f <=F f p |]
==> $p <=F Q"
by (simp add: cspF_fp_induct_cms_ref_left_ALL)
(*** right ***)
lemma cspF_fp_induct_cms_ref_right_ALL:
"[| Pf = PNfun ;
guardedfun Pf ;
FPmode = CMSmode ;
Q <=F f p;
ALL p. f p <=F (Pf p)<<f |]
==> Q <=F $p"
apply (simp add: refF_semF)
apply (insert cms_fixpoint_induction_rev
[of "[[Pf]]Ffun" "(%p. [[f p]]F)" "UFP [[Pf]]Ffun"])
apply (simp add: UFP_fp semF_hasUFP_cms)
apply (simp add: fold_order_prod_def)
apply (simp add: semF_subst_semFfun)
apply (simp add: mono_semFfun)
apply (simp add: contra_alpha_to_contst contraction_alpha_semFfun)
apply (simp add: order_prod_def)
apply (drule_tac x="p" in spec)+
apply (simp add: semF_UFP_cms)
done
(* csp law *)
lemma cspF_fp_induct_cms_ref_right:
"[| Pf = PNfun ;
guardedfun Pf ;
FPmode = CMSmode ;
Q <=F f p;
!! p. f p <=F (Pf p)<<f |]
==> Q <=F $p"
by (simp add: cspF_fp_induct_cms_ref_right_ALL)
(*----------- equality -----------*)
(*** left ***)
lemma cspF_fp_induct_cms_eq_left_ALL:
"[| Pf = PNfun ;
guardedfun Pf ;
FPmode = CMSmode ;
f p =F Q ;
ALL p. (Pf p)<<f =F f p |]
==> $p =F Q"
apply (simp add: eqF_semF)
apply (simp add: expand_fun_eq[THEN sym])
apply (simp add: semF_subst_semFfun)
apply (insert semF_UFP_fun_cms[of Pf])
apply (simp)
apply (subgoal_tac "(%p. [[$p]]F) = (%p. [[f p]]F)")
apply (simp add: expand_fun_eq)
apply (rule hasUFP_unique_solution[of "[[Pf]]Ffun"])
apply (simp_all add: semF_hasUFP_cms)
apply (simp add: UFP_fp semF_hasUFP_cms)
done
(* csp law *)
lemma cspF_fp_induct_cms_eq_left:
"[| Pf = PNfun ;
guardedfun Pf ;
FPmode = CMSmode ;
f p =F Q;
!! p. (Pf p)<<f =F f p |]
==> $p =F Q"
by (simp add: cspF_fp_induct_cms_eq_left_ALL)
lemma cspF_fp_induct_cms_eq_right:
"[| Pf = PNfun ;
guardedfun Pf ;
FPmode = CMSmode ;
Q =F f p;
!! p. f p =F (Pf p)<<f |]
==> Q =F $p"
apply (rule cspF_sym)
apply (rule cspF_fp_induct_cms_eq_left[of Pf f p Q])
apply (simp_all)
apply (rule cspF_sym)
apply (simp)
apply (rule cspF_sym)
apply (simp)
done
lemmas cspF_fp_induct_cms_left
= cspF_fp_induct_cms_ref_left cspF_fp_induct_cms_eq_left
lemmas cspF_fp_induct_cms_right
= cspF_fp_induct_cms_ref_right cspF_fp_induct_cms_eq_right
(****************** to add them again ******************)
declare Union_image_eq [simp]
declare Inter_image_eq [simp]
end
lemma semF_hasUFP_cms:
[| Pf = PNfun; guardedfun Pf |] ==> [[Pf]]Ffun hasUFP
lemma semF_UFP_cms:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode |] ==> [[$p]]F = UFP [[Pf]]Ffun p
lemma semF_UFP_fun_cms:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode |] ==> (%p. [[$p]]F) = UFP [[Pf]]Ffun
lemma MF_fixed_point_cms:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode |] ==> [[Pf]]Ffun MF = MF
lemma ALL_cspF_unique_cms:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; ∀p. (Pf p) << f =F f p |] ==> ∀p. f p =F $p
lemma cspF_unique_cms:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; ∀p. (Pf p) << f =F f p |] ==> f p =F $p
lemma ALL_cspF_unwind_cms:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode |] ==> ∀p. $p =F Pf p
lemma cspF_unwind_cms:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode |] ==> $p =F Pf p
lemma cspF_fp_induct_cms_ref_left_ALL:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; f p <=F Q; ∀p. (Pf p) << f <=F f p |] ==> $p <=F Q
lemma cspF_fp_induct_cms_ref_left:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; f p <=F Q; !!p. (Pf p) << f <=F f p |] ==> $p <=F Q
lemma cspF_fp_induct_cms_ref_right_ALL:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; Q <=F f p; ∀p. f p <=F (Pf p) << f |] ==> Q <=F $p
lemma cspF_fp_induct_cms_ref_right:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; Q <=F f p; !!p. f p <=F (Pf p) << f |] ==> Q <=F $p
lemma cspF_fp_induct_cms_eq_left_ALL:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; f p =F Q; ∀p. (Pf p) << f =F f p |] ==> $p =F Q
lemma cspF_fp_induct_cms_eq_left:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; f p =F Q; !!p. (Pf p) << f =F f p |] ==> $p =F Q
lemma cspF_fp_induct_cms_eq_right:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; Q =F f p; !!p. f p =F (Pf p) << f |] ==> Q =F $p
lemmas cspF_fp_induct_cms_left:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; f p <=F Q; !!p. (Pf p) << f <=F f p |] ==> $p <=F Q
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; f p =F Q; !!p. (Pf p) << f =F f p |] ==> $p =F Q
lemmas cspF_fp_induct_cms_left:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; f p <=F Q; !!p. (Pf p) << f <=F f p |] ==> $p <=F Q
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; f p =F Q; !!p. (Pf p) << f =F f p |] ==> $p =F Q
lemmas cspF_fp_induct_cms_right:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; Q <=F f p; !!p. f p <=F (Pf p) << f |] ==> Q <=F $p
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; Q =F f p; !!p. f p =F (Pf p) << f |] ==> Q =F $p
lemmas cspF_fp_induct_cms_right:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; Q <=F f p; !!p. f p <=F (Pf p) << f |] ==> Q <=F $p
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; Q =F f p; !!p. f p =F (Pf p) << f |] ==> Q =F $p