Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_contraction(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | July 2005 (modified) | | September 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | November 2005 (modified) | | April 2006 (modified) | | March 2007 (modified) | | August 2007 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_F_contraction imports CSP_F_domain CSP_T_contraction begin (***************************************************************** 1. contraction failuresfun 2. contraction failuresFun 3. contraction [[ ]]Ffun 4. contraction [[ ]]FFun *****************************************************************) (*=============================================================* | traces fstF | *=============================================================*) lemma non_expanding_traces_fstF: "noHide P ==> non_expanding (%M. traces P (fstF o M))" apply (subgoal_tac "(%M. traces P (fstF o M)) = (traces P) o (op o fstF)") apply (simp) apply (rule compo_non_expand) apply (simp add: non_expanding_traces) apply (simp add: non_expanding_op_fstF) apply (simp add: expand_fun_eq) done lemma contraction_alpha_traces_fstF: "guarded P ==> contraction_alpha (%M. traces P (fstF o M)) (1/2)" apply (subgoal_tac "(%M. traces P (fstF o M)) = (traces P) o (op o fstF)") apply (simp) apply (rule compo_contra_alpha_non_expand) apply (simp add: contraction_alpha_traces) apply (simp add: non_expanding_op_fstF) apply (simp add: expand_fun_eq) done (*--------------------------------* | STOP,SKIP,DIV | *--------------------------------*) (*** STOP ***) lemma map_alpha_failures_STOP: "0 <= alpha ==> map_alpha (failures (STOP)) alpha" by (simp add: failures_def map_alpha_Constant) lemma non_expanding_failures_STOP: "non_expanding (failures (STOP))" by (simp add: non_expanding_def map_alpha_failures_STOP) lemma contraction_alpha_failures_STOP: "[| 0 <= alpha ; alpha < 1 |] ==> contraction_alpha (failures (STOP)) alpha" by (simp add: failures_def contraction_alpha_Constant) (*** SKIP ***) lemma map_alpha_failures_SKIP: "0 <= alpha ==> map_alpha (failures (SKIP)) alpha" by (simp add: failures_def map_alpha_Constant) lemma non_expanding_failures_SKIP: "non_expanding (failures (SKIP))" by (simp add: non_expanding_def map_alpha_failures_SKIP) lemma contraction_alpha_failures_SKIP: "[| 0 <= alpha ; alpha < 1 |] ==> contraction_alpha (failures (SKIP)) alpha" by (simp add: failures_def contraction_alpha_Constant) (*** DIV ***) lemma map_alpha_failures_DIV: "0 <= alpha ==> map_alpha (failures (DIV)) alpha" by (simp add: failures_def map_alpha_Constant) lemma non_expanding_failures_DIV: "non_expanding (failures (DIV))" by (simp add: non_expanding_def map_alpha_failures_DIV) lemma contraction_alpha_failures_DIV: "[| 0 <= alpha ; alpha < 1 |] ==> contraction_alpha (failures (DIV)) alpha" by (simp add: failures_def contraction_alpha_Constant) (*--------------------------------* | Act_prefix | *--------------------------------*) lemma contraction_half_failures_Act_prefix_lm: "distance (failures (a -> P) M1, failures (a -> Q) M2) * 2 = distance (failures P M1, failures Q M2)" apply (rule sym) apply (rule rest_Suc_dist_half[simplified]) apply (rule allI) apply (simp add: rest_setF_eq_iff) apply (rule iffI) (* => *) apply (intro allI) apply (simp add: in_failures) apply (rule iffI) (* => *) apply (elim conjE exE disjE) apply (simp_all) apply (drule_tac x="sa" in spec) apply (drule_tac x="X" in spec) apply (simp) apply (drule_tac x="sa" in spec) apply (drule_tac x="X" in spec) apply (simp) apply (erule iffE, simp) apply (insert trace_last_nil_or_unnil) apply (drule_tac x="sa" in spec) apply (erule disjE, simp) apply (elim conjE exE) apply (simp add: appt_assoc_sym) apply (drule mp, fast) apply (simp) apply (rule_tac x="<Ev a> ^^ sb" in exI) apply (simp) (* <= *) apply (elim conjE exE disjE) apply (simp_all) apply (drule_tac x="sa" in spec) apply (drule_tac x="X" in spec) apply (simp) apply (drule_tac x="sa" in spec) apply (drule_tac x="X" in spec) apply (simp) apply (erule iffE, simp) apply (drule_tac x="sa" in spec) apply (erule disjE, simp) apply (elim conjE exE) apply (simp add: appt_assoc_sym) apply (drule mp, fast) apply (simp) (* <= *) apply (intro allI) apply (drule_tac x="<Ev a> ^^ s" in spec) apply (drule_tac x="X" in spec) apply (simp add: in_failures) apply (rule iffI) (* => *) apply (elim conjE exE disjE) apply (simp) apply (erule iffE, simp) apply (simp add: appt_assoc_sym) apply (drule mp, force) apply (force) (* <= *) apply (elim conjE exE disjE) apply (simp) apply (erule iffE, simp) apply (simp add: appt_assoc_sym) apply (drule mp, force) apply (force) done (*** contraction_half ***) lemma contraction_half_failures_Act_prefix: "non_expanding (failures P) ==> contraction_alpha (failures (a -> P)) (1 / 2)" apply (simp add: contraction_alpha_def non_expanding_def map_alpha_def) apply (intro allI) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (simp add: contraction_half_failures_Act_prefix_lm) done (*** contraction ***) lemma contraction_failures_Act_prefix: "non_expanding (failures P) ==> contraction (failures (a -> P))" apply (simp add: contraction_def) apply (rule_tac x="1/2" in exI) by (simp add: contraction_half_failures_Act_prefix) (*** non_expanding ***) lemma non_expanding_failures_Act_prefix: "non_expanding (failures P) ==> non_expanding (failures (a -> P))" apply (rule contraction_non_expanding) by (simp add: contraction_failures_Act_prefix) (*--------------------------------* | Ext_pre_choice | *--------------------------------*) (*** rest_setF (subset) ***) lemma Ext_pre_choice_Act_prefix_rest_setF_sub: "[| ALL a : X. failures (a -> Pf a) M1 .|. n <= failures (a -> Qf a) M2 .|. n |] ==> failures (? a:X -> Pf a) M1 .|. n <= failures (? a:X -> Qf a) M2 .|. n" apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_failures) apply (elim conjE exE disjE, simp_all) apply (drule_tac x="a" in bspec, simp) apply (drule_tac x="<Ev a> ^^ sa" in spec) apply (drule_tac x="Xa" in spec) apply (simp) apply (drule_tac x="a" in bspec, simp) apply (drule_tac x="s' ^^ <Tick>" in spec) apply (drule_tac x="Xa" in spec) apply (auto) done (*** rest_setF (equal) ***) lemma Ext_pre_choice_Act_prefix_rest_setF: "[| ALL a : X. failures (a -> Pf a) M1 .|. n = failures (a -> Qf a) M2 .|. n |] ==> failures (? a:X -> Pf a) M1 .|. n = failures (? a:X -> Qf a) M2 .|. n" apply (rule order_antisym) by (simp_all add: Ext_pre_choice_Act_prefix_rest_setF_sub) (*** distF lemma ***) lemma Ext_pre_choice_Act_prefix_distF_nonempty: "[| X ~= {} ; PQs = {(failures (a -> Pf a) M1, failures (a -> Qf a) M2)|a. a : X} |] ==> (EX PQ. PQ:PQs & distance(failures (? a:X -> Pf a) M1, failures (? a:X -> Qf a) M2) <= distance(fst PQ, snd PQ))" apply (rule rest_to_dist_pair) apply (force) apply (intro allI impI) apply (rule Ext_pre_choice_Act_prefix_rest_setF) apply (rule ballI) apply (simp) apply (drule_tac x="failures (a -> Pf a) M1" in spec) apply (drule_tac x="failures (a -> Qf a) M2" in spec) by (auto) (*** contraction lemma ***) lemma contraction_half_failures_Ext_pre_choice_lm: "[| X ~= {} ; ALL a. distance (failures (Pf a) M1, failures (Qf a) M2) <= distance (x1, x2) |] ==> distance (failures (? a:X -> Pf a) M1, failures (? a:X -> Qf a) M2) * 2 <= distance (x1, x2)" apply (insert Ext_pre_choice_Act_prefix_distF_nonempty [of X "{(failures (a -> Pf a) M1, failures (a -> Qf a) M2) |a. a : X}" Pf M1 Qf M2]) apply (simp) apply (elim conjE exE) apply (simp) apply (subgoal_tac "distance (failures (aa -> Pf aa) M1, failures (aa -> Qf aa) M2) * 2 = distance (failures (Pf aa) M1, failures (Qf aa) M2)") apply (drule_tac x="aa" in spec) apply (force) by (simp add: contraction_half_failures_Act_prefix_lm) (*** contraction_half ***) lemma contraction_half_failures_Ext_pre_choice: "ALL a. non_expanding (failures (Pf a)) ==> contraction_alpha (failures (? a:X -> (Pf a))) (1 / 2)" apply (simp add: contraction_alpha_def non_expanding_def map_alpha_def) apply (case_tac "X = {}") apply (simp add: failures_def) by (simp add: contraction_half_failures_Ext_pre_choice_lm) (*** Ext_pre_choice_evalT_contraction ***) lemma contraction_failures_Ext_pre_choice: "ALL a. non_expanding (failures (Pf a)) ==> contraction (failures (? a:X -> (Pf a)))" apply (simp add: contraction_def) apply (rule_tac x="1/2" in exI) by (simp add: contraction_half_failures_Ext_pre_choice) (*** Ext_pre_choice_evalT_non_expanding ***) lemma non_expanding_failures_Ext_pre_choice: "ALL a. non_expanding (failures (Pf a)) ==> non_expanding (failures (? a:X -> (Pf a)))" apply (rule contraction_non_expanding) by (simp add: contraction_failures_Ext_pre_choice) (*--------------------------------* | Ext_choice | *--------------------------------*) (*** rest_domT (subset) ***) lemma Ext_choice_rest_setF_sub: "[| traces P1 (fstF o M1) .|. n <= traces P2 (fstF o M2) .|. n ; traces Q1 (fstF o M1) .|. n <= traces Q2 (fstF o M2) .|. n ; failures P1 M1 .|. n <= failures P2 M2 .|. n ; failures Q1 M1 .|. n <= failures Q2 M2 .|. n |] ==> failures (P1 [+] Q1) M1 .|. n <= failures (P2 [+] Q2) M2 .|. n" apply (simp add: subdomT_iff subsetF_iff) apply (intro allI impI) apply (simp add: in_rest_domT) apply (simp add: in_rest_setF) apply (simp add: in_failures) apply (elim conjE exE disjE, simp_all) apply (rotate_tac 2) apply (drule_tac x="s' ^^ <Tick>" in spec) apply (drule_tac x="X" in spec) apply (drule mp, simp, fast) apply (simp) apply (rotate_tac 3) apply (drule_tac x="s' ^^ <Tick>" in spec) apply (drule_tac x="X" in spec) apply (drule mp, simp, fast) apply (simp) done (*** rest_setF (equal) ***) lemma Ext_choice_rest_setF: "[| traces P1 (fstF o M1) .|. n = traces P2 (fstF o M2) .|. n ; traces Q1 (fstF o M1) .|. n = traces Q2 (fstF o M2) .|. n ; failures P1 M1 .|. n = failures P2 M2 .|. n ; failures Q1 M1 .|. n = failures Q2 M2 .|. n |] ==> failures (P1 [+] Q1) M1 .|. n = failures (P2 [+] Q2) M2 .|. n" apply (rule order_antisym) by (simp_all add: Ext_choice_rest_setF_sub) (*** distF lemma ***) lemma Ext_choice_distF: "[| PQTs = {(traces P1 (fstF o M1), traces P2 (fstF o M2)), (traces Q1 (fstF o M1), traces Q2 (fstF o M2))} ; PQFs = {(failures P1 M1, failures P2 M2), (failures Q1 M1, failures Q2 M2)} |] ==> (EX PQ. PQ:PQTs & distance(failures (P1 [+] Q1) M1, failures (P2 [+] Q2) M2) <= distance((fst PQ), (snd PQ))) | (EX PQ. PQ:PQFs & distance(failures (P1 [+] Q1) M1, failures (P2 [+] Q2) M2) <= distance((fst PQ), (snd PQ)))" apply (rule rest_to_dist_pair_two) apply (simp_all) by (auto intro: Ext_choice_rest_setF) (*** map_alpha F lemma ***) lemma map_alpha_failures_Ext_choice_lm: "[| distance (traces P1 (fstF o M1), traces P2 (fstF o M2)) <= alpha * distance (x1, x2) ; distance (traces Q1 (fstF o M1), traces Q2 (fstF o M2)) <= alpha * distance (x1, x2) ; distance (failures P1 M1, failures P2 M2) <= alpha * distance (x1, x2) ; distance (failures Q1 M1, failures Q2 M2) <= alpha * distance (x1, x2) |] ==> distance (failures (P1 [+] Q1) M1, failures (P2 [+] Q2) M2) <= alpha * distance (x1, x2)" apply (insert Ext_choice_distF [of "{(traces P1 (fstF o M1), traces P2 (fstF o M2)), (traces Q1 (fstF o M1), traces Q2 (fstF o M2))}" P1 M1 P2 M2 Q1 Q2 "{(failures P1 M1, failures P2 M2), (failures Q1 M1, failures Q2 M2)}"]) by (auto) (*** map_alpha ***) lemma map_alpha_failures_Ext_choice: "[| map_alpha (%M. traces P (fstF o M)) alpha ; map_alpha (%M. traces Q (fstF o M)) alpha ; map_alpha (failures P) alpha ; map_alpha (failures Q) alpha |] ==> map_alpha (failures (P [+] Q)) alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) by (simp add: map_alpha_failures_Ext_choice_lm) (*** non_expanding ***) lemma non_expanding_failures_Ext_choice: "[| non_expanding (%M. traces P (fstF o M)) ; non_expanding (%M. traces Q (fstF o M)) ; non_expanding (failures P) ; non_expanding (failures Q) |] ==> non_expanding (failures (P [+] Q))" by (simp add: non_expanding_def map_alpha_failures_Ext_choice) (*** contraction ***) lemma contraction_alpha_failures_Ext_choice: "[| contraction_alpha (%M. traces P (fstF o M)) alpha ; contraction_alpha (%M. traces Q (fstF o M)) alpha ; contraction_alpha (failures P) alpha ; contraction_alpha (failures Q) alpha|] ==> contraction_alpha (failures (P [+] Q)) alpha" by (simp add: contraction_alpha_def map_alpha_failures_Ext_choice) (*--------------------------------* | Int_choice | *--------------------------------*) (*** rest_domT (subset) ***) lemma Int_choice_rest_setF_sub: "[| failures P1 M1 .|. n <= failures P2 M2 .|. n ; failures Q1 M1 .|. n <= failures Q2 M2 .|. n |] ==> failures (P1 |~| Q1) M1 .|. n <= failures (P2 |~| Q2) M2 .|. n" apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_failures) apply (elim disjE conjE exE) by (force)+ (*** rest_setF (equal) ***) lemma Int_choice_rest_setF: "[| failures P1 M1 .|. n = failures P2 M2 .|. n ; failures Q1 M1 .|. n = failures Q2 M2 .|. n |] ==> failures (P1 |~| Q1) M1 .|. n = failures (P2 |~| Q2) M2 .|. n" apply (rule order_antisym) by (simp_all add: Int_choice_rest_setF_sub) (*** distF lemma ***) lemma Int_choice_distF: "PQs = {(failures P1 M1, failures P2 M2), (failures Q1 M1, failures Q2 M2)} ==> (EX PQ. PQ:PQs & distance(failures (P1 |~| Q1) M1, failures (P2 |~| Q2) M2) <= distance((fst PQ), (snd PQ)))" apply (rule rest_to_dist_pair) by (auto intro: Int_choice_rest_setF) (*** map_alpha F lemma ***) lemma map_alpha_failures_Int_choice_lm: "[| distance (failures P1 M1, failures P2 M2) <= alpha * distance (x1, x2) ; distance (failures Q1 M1, failures Q2 M2) <= alpha * distance (x1, x2) |] ==> distance (failures (P1 |~| Q1) M1, failures (P2 |~| Q2) M2) <= alpha * distance (x1, x2)" apply (insert Int_choice_distF [of "{(failures P1 M1, failures P2 M2), (failures Q1 M1, failures Q2 M2)}" P1 M1 P2 M2 Q1 Q2]) by (auto) (*** map_alpha ***) lemma map_alpha_failures_Int_choice: "[| map_alpha (failures P) alpha ; map_alpha (failures Q) alpha |] ==> map_alpha (failures (P |~| Q)) alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) by (simp add: map_alpha_failures_Int_choice_lm) (*** non_expanding ***) lemma non_expanding_failures_Int_choice: "[| non_expanding (failures P) ; non_expanding (failures Q) |] ==> non_expanding (failures (P |~| Q))" by (simp add: non_expanding_def map_alpha_failures_Int_choice) (*** contraction ***) lemma contraction_alpha_failures_Int_choice: "[| contraction_alpha (failures P) alpha ; contraction_alpha (failures Q) alpha|] ==> contraction_alpha (failures (P |~| Q)) alpha" by (simp add: contraction_alpha_def map_alpha_failures_Int_choice) (*--------------------------------* | Rep_int_choice | *--------------------------------*) (*** rest_setF (subset) ***) lemma Rep_int_choice_rest_setF_sub: "[| ALL c : sumset C. failures (Pf c) M1 .|. n <= failures (Qf c) M2 .|. n |] ==> failures (!! :C .. Pf) M1 .|. n <= failures (!! :C .. Qf) M2 .|. n" apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_failures) apply (elim conjE bexE) apply (rule_tac x="c" in bexI) by (auto) (*** rest_setF (equal) ***) lemma Rep_int_choice_rest_setF: "[| ALL c : sumset C. failures (Pf c) M1 .|. n = failures (Qf c) M2 .|. n |] ==> failures (!! :C .. Pf) M1 .|. n = failures (!! :C .. Qf) M2 .|. n" apply (rule order_antisym) by (simp_all add: Rep_int_choice_rest_setF_sub) (*** distF lemma ***) lemma Rep_int_choice_distF_nonempty: "[| sumset C ~= {} ; PQs = {(failures (Pf c) M1, failures (Qf c) M2)|c. c : sumset C} |] ==> (EX PQ. PQ:PQs & distance(failures (!! :C .. Pf) M1, failures (!! :C .. Qf) M2) <= distance(fst PQ, snd PQ))" apply (rule rest_to_dist_pair) apply (fast) apply (intro allI impI) apply (rule Rep_int_choice_rest_setF) by (auto) (*** map_alpha F lemma ***) lemma map_alpha_failures_Rep_int_choice_lm: "[| sumset C ~= {} ; ALL c. distance (failures (Pf c) M1, failures (Qf c) M2) <= alpha * distance (x1, x2) |] ==> distance(failures (!! :C .. Pf) M1, failures (!! :C .. Qf) M2) <= alpha * distance(x1, x2)" apply (insert Rep_int_choice_distF_nonempty) apply (insert Rep_int_choice_distF_nonempty [of C "{(failures (Pf c) M1, failures (Qf c) M2)|c. c : sumset C}" Pf M1 Qf M2]) apply (simp) apply (elim conjE exE, simp) apply (drule_tac x="c" in spec) by (force) (*** map_alpha ***) lemma map_alpha_failures_Rep_int_choice: "ALL c. map_alpha (failures (Pf c)) alpha ==> map_alpha (failures (!! :C .. Pf)) alpha" apply (simp add: map_alpha_def) apply (case_tac "sumset C = {}") apply (simp add: failures_def) apply (simp add: real_mult_order_eq) apply (simp add: map_alpha_failures_Rep_int_choice_lm) done (*** non_expanding ***) lemma non_expanding_failures_Rep_int_choice: "ALL c. non_expanding (failures (Pf c)) ==> non_expanding (failures (!! :C .. Pf))" by (simp add: non_expanding_def map_alpha_failures_Rep_int_choice) (*** Rep_int_choice_evalT_contraction_alpha ***) lemma contraction_alpha_failures_Rep_int_choice: "ALL c. contraction_alpha (failures (Pf c)) alpha ==> contraction_alpha (failures (!! :C .. Pf)) alpha" by (simp add: contraction_alpha_def map_alpha_failures_Rep_int_choice) (*--------------------------------* | IF | *--------------------------------*) (*** rest_setF (subset) ***) lemma IF_rest_setF_sub: "[| failures P1 M1 .|. n <= failures P2 M2 .|. n ; failures Q1 M1 .|. n <= failures Q2 M2 .|. n |] ==> failures (IF b THEN P1 ELSE Q1) M1 .|. n <= failures (IF b THEN P2 ELSE Q2) M2 .|. n" apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_failures) done (*** rest_setF (equal) ***) lemma IF_rest_setF: "[| failures P1 M1 .|. n = failures P2 M2 .|. n ; failures Q1 M1 .|. n = failures Q2 M2 .|. n |] ==> failures (IF b THEN P1 ELSE Q1) M1 .|. n = failures (IF b THEN P2 ELSE Q2) M2 .|. n" apply (rule order_antisym) by (simp_all add: IF_rest_setF_sub) (*** distF lemma ***) lemma IF_distF: "PQs = {(failures P1 M1, failures P2 M2), (failures Q1 M1, failures Q2 M2)} ==> (EX PQ. PQ:PQs & distance(failures (IF b THEN P1 ELSE Q1) M1, failures (IF b THEN P2 ELSE Q2) M2) <= distance((fst PQ), (snd PQ)))" apply (rule rest_to_dist_pair) by (auto intro: IF_rest_setF) (*** map_alpha F lemma ***) lemma map_alpha_failures_IF_lm: "[| distance (failures P1 M1, failures P2 M2) <= alpha * distance (x1, x2) ; distance (failures Q1 M1, failures Q2 M2) <= alpha * distance (x1, x2) |] ==> distance(failures (IF b THEN P1 ELSE Q1) M1, failures (IF b THEN P2 ELSE Q2) M2) <= alpha * distance (x1, x2)" apply (insert IF_distF [of "{(failures P1 M1, failures P2 M2), (failures Q1 M1, failures Q2 M2)}"P1 M1 P2 M2 Q1 Q2 b]) by (auto) (*** map_alpha ***) lemma map_alpha_failures_IF: "[| map_alpha (failures P) alpha ; map_alpha (failures Q) alpha |] ==> map_alpha (failures (IF b THEN P ELSE Q)) alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) by (simp add: map_alpha_failures_IF_lm) (*** non_expanding ***) lemma non_expanding_failures_IF: "[| non_expanding (failures P) ; non_expanding (failures Q) |] ==> non_expanding (failures (IF b THEN P ELSE Q))" by (simp add: non_expanding_def map_alpha_failures_IF) (*** contraction_alpha ***) lemma contraction_alpha_failures_IF: "[| contraction_alpha (failures P) alpha ; contraction_alpha (failures Q) alpha|] ==> contraction_alpha (failures (IF b THEN P ELSE Q)) alpha" by (simp add: contraction_alpha_def map_alpha_failures_IF) (*--------------------------------* | Parallel | *--------------------------------*) (*** rest_setF (subset) ***) lemma Parallel_rest_setF_sub: "[| failures P1 M1 .|. n <= failures P2 M2 .|. n ; failures Q1 M1 .|. n <= failures Q2 M2 .|. n |] ==> failures (P1 |[X]| Q1) M1 .|. n <= failures (P2 |[X]| Q2) M2 .|. n" apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_failures) apply (elim conjE exE) apply (rule_tac x="Y" in exI) apply (rule_tac x="Z" in exI) apply (simp) apply (rule_tac x="sa" in exI) apply (rule_tac x="t" in exI) apply (simp) apply (drule_tac x="sa" in spec) apply (drule_tac x="t" in spec) apply (drule_tac x="Y" in spec) apply (drule_tac x="Z" in spec) apply (erule disjE, simp) (* lengtht s < n *) apply (erule par_tr_lengthtE) apply (simp) apply (elim conjE exE, simp) (* lengtht s = n *) apply (simp add: par_tr_last) apply (elim conjE exE, simp) apply (erule par_tr_lengthtE) apply (case_tac "Suc (lengtht s'a) < n", simp) apply (case_tac "Suc (lengtht t') < n", simp) apply (case_tac "Suc (lengtht t') = n", simp) apply (drule mp, force) apply (simp) apply (force) (* contradict *) apply (case_tac "Suc (lengtht t') < n", simp) apply (drule mp) apply (rule_tac x="s'a" in exI, simp) apply (simp) apply (case_tac "Suc (lengtht t') = n", simp) apply (drule mp) apply (rule_tac x="s'a" in exI, simp) apply (drule mp) apply (rule_tac x="t'" in exI, simp) apply (simp) apply (force) (* contradict *) done (*** rest_setF (equal) ***) lemma Parallel_rest_setF: "[| failures P1 M1 .|. n = failures P2 M2 .|. n ; failures Q1 M1 .|. n = failures Q2 M2 .|. n |] ==> failures (P1 |[X]| Q1) M1 .|. n = failures (P2 |[X]| Q2) M2 .|. n" apply (rule order_antisym) by (simp_all add: Parallel_rest_setF_sub) (*** distF lemma ***) lemma Parallel_distF: "PQs = {(failures P1 M1, failures P2 M2), (failures Q1 M1, failures Q2 M2)} ==> (EX PQ. PQ:PQs & distance(failures (P1 |[X]| Q1) M1, failures (P2 |[X]| Q2) M2) <= distance((fst PQ), (snd PQ)))" apply (rule rest_to_dist_pair) by (auto intro: Parallel_rest_setF) (*** map_alpha F lemma ***) lemma map_alpha_failures_Parallel_lm: "[| distance (failures P1 M1, failures P2 M2) <= alpha * distance (x1, x2) ; distance (failures Q1 M1, failures Q2 M2) <= alpha * distance (x1, x2) |] ==> distance (failures (P1 |[X]| Q1) M1, failures (P2 |[X]| Q2) M2) <= alpha * distance (x1, x2)" apply (insert Parallel_distF [of "{(failures P1 M1, failures P2 M2), (failures Q1 M1, failures Q2 M2)}" P1 M1 P2 M2 Q1 Q2 X]) by (auto) (*** map_alpha ***) lemma map_alpha_failures_Parallel: "[| map_alpha (failures P) alpha ; map_alpha (failures Q) alpha |] ==> map_alpha (failures (P |[X]| Q)) alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) by (simp add: map_alpha_failures_Parallel_lm) (*** non_expanding ***) lemma non_expanding_failures_Parallel: "[| non_expanding (failures P) ; non_expanding (failures Q) |] ==> non_expanding (failures (P|[X]| Q))" by (simp add: non_expanding_def map_alpha_failures_Parallel) (*** contraction_alpha ***) lemma contraction_alpha_failures_Parallel: "[| contraction_alpha (failures P) alpha ; contraction_alpha (failures Q) alpha |] ==> contraction_alpha (failures (P |[X]| Q)) alpha" by (simp add: contraction_alpha_def map_alpha_failures_Parallel) (*--------------------------------* | Hiding | *--------------------------------*) (* cms rules for Hiding is not necessary because processes are guarded. *) (*--------------------------------* | Renaming | *--------------------------------*) (*** rest_setF (subset) ***) lemma Renaming_rest_setF_sub: "failures P M1 .|. n <= failures Q M2 .|. n ==> failures (P [[r]]) M1 .|. n <= failures (Q [[r]]) M2 .|. n" apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_failures) apply (elim conjE exE) apply (rule_tac x="sa" in exI) apply (drule_tac x="sa" in spec) apply (drule_tac x="[[r]]inv X" in spec) apply (simp) apply (erule disjE) apply (simp add: ren_tr_lengtht) apply (elim conjE exE) apply (simp add: ren_tr_lengtht) apply (simp add: ren_tr_appt_decompo_right) apply (elim conjE exE, simp) by (fast) (*** rest_setF (equal) ***) lemma Renaming_rest_setF: "failures P M1 .|. n = failures Q M2 .|. n ==> failures (P [[r]]) M1 .|. n = failures (Q [[r]]) M2 .|. n" apply (rule order_antisym) by (simp_all add: Renaming_rest_setF_sub) (*** distF lemma ***) lemma Renaming_distF: "distance(failures (P [[r]]) M1, failures (Q [[r]]) M2) <= distance(failures P M1, failures Q M2)" apply (rule rest_distance_subset) by (auto intro: Renaming_rest_setF) (*** map_alphaT lemma ***) lemma map_alpha_failures_Renaming_lm: "distance(failures P M1, failures Q M2) <= alpha * distance (x1, x2) ==> distance(failures (P [[r]]) M1, failures (Q [[r]]) M2) <= alpha * distance(x1, x2)" apply (insert Renaming_distF[of P r M1 Q M2]) by (simp) (*** map_alpha ***) lemma map_alpha_failures_Renaming: "map_alpha (failures P) alpha ==> map_alpha (failures (P [[r]])) alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) by (simp add: map_alpha_failures_Renaming_lm) (*** non_expanding ***) lemma non_expanding_failures_Renaming: "non_expanding (failures P) ==> non_expanding (failures (P [[r]]))" by (simp add: non_expanding_def map_alpha_failures_Renaming) (*** contraction_alpha ***) lemma contraction_alpha_failures_Renaming: "contraction_alpha (failures P) alpha ==> contraction_alpha (failures (P [[r]])) alpha" by (simp add: contraction_alpha_def map_alpha_failures_Renaming) (*--------------------------------* | Seq_compo | *--------------------------------*) (*** rest_setF (subset) ***) lemma Seq_compo_rest_setF_sub: "[| traces P1 (fstF o M1) .|. n <= traces P2 (fstF o M2) .|. n ; failures P1 M1 .|. n <= failures P2 M2 .|. n ; failures Q1 M1 .|. n <= failures Q2 M2 .|. n |] ==> failures (P1 ;; Q1) M1 .|. n <= failures (P2 ;; Q2) M2 .|. n" apply (simp add: subsetF_iff) apply (simp add: subdomT_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_rest_domT) apply (simp add: in_failures) apply (elim conjE exE disjE) apply (simp_all) (* case 1 *) apply (rule disjI2) apply (rule_tac x="sa" in exI) apply (rule_tac x="t" in exI) apply (simp) (* case 2 *) apply (rule disjI2) apply (rule_tac x="sa" in exI) apply (rule_tac x="t" in exI) apply (simp) apply (drule_tac x=" sa ^^ <Tick>" in spec) apply (simp) apply (insert trace_last_nil_or_unnil) apply (rotate_tac -1) apply (drule_tac x="t" in spec) apply (erule disjE, simp) apply (rotate_tac 2) apply (drule sym) apply (simp) apply (elim conjE exE, simp) apply (simp add: appt_assoc_sym) apply (rotate_tac 1) apply (drule_tac x="sb ^^ <Tick>" in spec) apply (drule_tac x="X" in spec, simp) apply (elim conjE) apply (case_tac "Suc (lengtht sb) < n", simp) apply (case_tac "Suc (lengtht sb) = n", simp) apply (drule mp, force) apply (simp) apply (force) done (*** rest_setF (equal) ***) lemma Seq_compo_rest_setF: "[| traces P1 (fstF o M1) .|. n = traces P2 (fstF o M2) .|. n ; failures P1 M1 .|. n = failures P2 M2 .|. n ; failures Q1 M1 .|. n = failures Q2 M2 .|. n |] ==> failures (P1 ;; Q1) M1 .|. n = failures (P2 ;; Q2) M2 .|. n" apply (rule order_antisym) by (simp_all add: Seq_compo_rest_setF_sub) (*** distF lemma ***) lemma Seq_compo_distF: "[| PQTs = {(traces P1 (fstF o M1), traces P2 (fstF o M2))} ; PQFs = {(failures P1 M1, failures P2 M2), (failures Q1 M1, failures Q2 M2)} |] ==> (EX PQ. PQ:PQTs & distance(failures (P1 ;; Q1) M1, failures (P2 ;; Q2) M2) <= distance((fst PQ), (snd PQ))) | (EX PQ. PQ:PQFs & distance(failures (P1 ;; Q1) M1, failures (P2 ;; Q2) M2) <= distance((fst PQ), (snd PQ)))" apply (rule rest_to_dist_pair_two) by (auto intro: Seq_compo_rest_setF) (*** map_alpha F lemma ***) lemma map_alpha_failures_Seq_compo_lm: "[| distance (traces P1 (fstF o M1), traces P2 (fstF o M2)) <= alpha * distance (x1, x2) ; distance (failures P1 M1, failures P2 M2) <= alpha * distance (x1, x2) ; distance (failures Q1 M1, failures Q2 M2) <= alpha * distance (x1, x2) |] ==> distance (failures (P1 ;; Q1) M1, failures (P2 ;; Q2) M2) <= alpha * distance (x1, x2)" apply (insert Seq_compo_distF [of "{(traces P1 (fstF o M1), traces P2 (fstF o M2))}" P1 M1 P2 M2 "{(failures P1 M1, failures P2 M2), (failures Q1 M1, failures Q2 M2)}" Q1 Q2]) by (auto) (*** map_alpha ***) lemma map_alpha_failures_Seq_compo: "[| map_alpha (%M. traces P (fstF o M)) alpha ; map_alpha (failures P) alpha ; map_alpha (failures Q) alpha |] ==> map_alpha (failures (P ;; Q)) alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) by (simp add: map_alpha_failures_Seq_compo_lm) (*** non_expanding ***) lemma non_expanding_failures_Seq_compo: "[| non_expanding (%M. traces P (fstF o M)) ; non_expanding (failures P) ; non_expanding (failures Q) |] ==> non_expanding (failures (P ;; Q))" by (simp add: non_expanding_def map_alpha_failures_Seq_compo) (*** contraction_alpha ***) lemma contraction_alpha_failures_Seq_compo: "[| contraction_alpha (%M. traces P (fstF o M)) alpha ; contraction_alpha (failures P) alpha ; contraction_alpha (failures Q) alpha|] ==> contraction_alpha (failures (P ;; Q)) alpha" by (simp add: contraction_alpha_def map_alpha_failures_Seq_compo) (*--------------------------------* | Seq_compo (gSKIP) | *--------------------------------*) (*** rest_setF (subset) ***) lemma gSKIP_Seq_compo_rest_setF_sub: "[| traces P1 (fstF o M1) .|. (Suc n) <= traces P2 (fstF o M2) .|. (Suc n) ; failures P1 M1 .|. (Suc n) <= failures P2 M2 .|. (Suc n) ; failures Q1 M1 .|. n <= failures Q2 M2 .|. n ; <Tick> ~:t traces P1 (fstF o M1) ; <Tick> ~:t traces P2 (fstF o M2) |] ==> failures (P1 ;; Q1) M1 .|. (Suc n) <= failures (P2 ;; Q2) M2 .|. (Suc n)" apply (simp add: subsetF_iff) apply (simp add: subdomT_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_rest_domT) apply (simp add: in_failures) apply (elim conjE exE disjE) apply (simp_all) (* case 1 *) apply (insert trace_last_nil_or_unnil) apply (rotate_tac -1) apply (drule_tac x="sa" in spec) apply (erule disjE) apply (simp add: gSKIP_to_Tick_notin_traces) (* sa = []t *) apply (rule disjI2) (* sa ~= []t *) apply (elim conjE exE, simp) apply (rule_tac x="(sb ^^ <a>)" in exI) apply (rule_tac x="t" in exI) apply (simp) (* case 2 *) apply (rotate_tac -1) apply (drule_tac x="t" in spec) apply (erule disjE) apply (simp) (* t = []t *) apply (rotate_tac 5) apply (drule sym) apply (simp) (* contradict noTick *) apply (rule disjI2) (* t ~= []t *) apply (elim conjE exE, simp) apply (simp add: appt_assoc_sym) apply (rule_tac x="sa" in exI) apply (rule_tac x="sb ^^ <Tick>" in exI) apply (simp add: appt_assoc) apply (insert trace_last_nil_or_unnil) apply (rotate_tac -1) apply (drule_tac x="sa" in spec) apply (erule disjE) apply (simp add: gSKIP_to_Tick_notin_traces) (* sa = []t *) apply (elim conjE exE, simp) (* i.e. lengtht sb < n *) apply (rotate_tac 2) apply (drule_tac x="sb ^^ <Tick>" in spec) apply (drule_tac x="X" in spec) apply (drule mp) apply (simp) apply (case_tac "Suc (lengtht sb) < n", simp) apply (case_tac "Suc (lengtht sb) = n", fast) apply (force) apply (simp) done (*** rest_setF (equal) ***) lemma gSKIP_Seq_compo_rest_setF: "[| traces P1 (fstF o M1) .|. (Suc n) = traces P2 (fstF o M2) .|. (Suc n) ; failures P1 M1 .|. (Suc n) = failures P2 M2 .|. (Suc n) ; failures Q1 M1 .|. n = failures Q2 M2 .|. n ; <Tick> ~:t traces P1 (fstF o M1) ; <Tick> ~:t traces P2 (fstF o M2) |] ==> failures (P1 ;; Q1) M1 .|. (Suc n) = failures (P2 ;; Q2) M2 .|. (Suc n)" apply (rule order_antisym) by (simp_all add: gSKIP_Seq_compo_rest_setF_sub) (*** map_alpha F lemma ***) lemma gSKIP_map_alpha_failures_Seq_compo_lm: "[| distance (traces P1 (fstF o M1), traces P2 (fstF o M2)) * 2 <= (1/2)^n ; distance (failures P1 M1, failures P2 M2) * 2 <= (1/2)^n ; distance (failures Q1 M1, failures Q2 M2) <= (1/2)^n ; <Tick> ~:t traces P1 (fstF o M1); <Tick> ~:t traces P2 (fstF o M2) |] ==> distance (failures (P1 ;; Q1) M1, failures (P2 ;; Q2) M2) * 2 <= (1/2)^n" apply (insert gSKIP_Seq_compo_rest_setF[of P1 M1 n P2 M2 Q1 Q2]) apply (simp add: distance_rs_le_1) done (*** map_alpha ***) lemma gSKIP_contraction_half_failures_Seq_compo: "[| contraction_alpha (%M. traces P (fstF o M)) (1/2) ; contraction_alpha (failures P) (1/2) ; non_expanding (failures Q) ; gSKIP P |] ==> contraction_alpha (failures (P ;; Q)) (1/2)" apply (simp add: contraction_alpha_def non_expanding_def map_alpha_def) apply (intro allI) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) apply (case_tac "x = y", simp) apply (simp add: distance_iff) apply (insert gSKIP_to_Tick_notin_traces) apply (frule_tac x="P" in spec) apply (drule_tac x="P" in spec) apply (drule_tac x="fstF o x" in spec) apply (drule_tac x="fstF o y" in spec) apply (simp add: gSKIP_map_alpha_failures_Seq_compo_lm) done (*--------------------------------* | Depth_rest | *--------------------------------*) (*** rest_setF (equal) ***) lemma Depth_rest_rest_setF: "failures P M1 .|. n = failures Q M2 .|. n ==> failures (P |. m) M1 .|. n = failures (Q |. m) M2 .|. n" apply (simp add: failures.simps) apply (simp add: min_rs) apply (rule rest_equal_preserve) apply (simp) apply (simp add: min_def) done (*** distF lemma ***) lemma Depth_rest_distF: "distance(failures (P |. m) M1, failures (Q |. m) M2) <= distance(failures P M1, failures Q M2)" apply (rule rest_distance_subset) by (auto intro: Depth_rest_rest_setF) (*** map_alphaT lemma ***) lemma map_alpha_failures_Depth_rest_lm: "distance(failures P M1, failures Q M2) <= alpha * distance (x1, x2) ==> distance(failures (P |. m) M1, failures (Q |. m) M2) <= alpha * distance(x1, x2)" apply (insert Depth_rest_distF[of P m M1 Q M2]) by (simp) (*** map_alpha ***) lemma map_alpha_failures_Depth_rest: "map_alpha (failures P) alpha ==> map_alpha (failures (P |. n)) alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) by (simp add: map_alpha_failures_Depth_rest_lm) (*** non_expanding ***) lemma non_expanding_failures_Depth_rest: "non_expanding (failures P) ==> non_expanding (failures (P |. n))" by (simp add: non_expanding_def map_alpha_failures_Depth_rest) (*** contraction_alpha ***) lemma contraction_alpha_failures_Depth_rest: "contraction_alpha (failures P) alpha ==> contraction_alpha (failures (P |. n)) alpha" by (simp add: contraction_alpha_def map_alpha_failures_Depth_rest) (*--------------------------------* | variable | *--------------------------------*) (*** non_expanding ***) lemma continuous_failures_variable_lm: "non_expanding (sndF o (%M. M p))" apply (rule compo_non_expand) apply (simp add: non_expanding_sndF) apply (simp add: non_expanding_prod_variable) done lemma non_expanding_failures_variable: "non_expanding (failures ($p))" apply (simp add: failures_def) apply (simp add: continuous_failures_variable_lm[simplified comp_def]) done (*--------------------------------* | Procfun | *--------------------------------*) (***************************************************************** | non_expanding | *****************************************************************) lemma non_expanding_failures_lm: "noHide P --> non_expanding (failures P)" apply (induct_tac P) apply (simp add: non_expanding_failures_STOP) apply (simp add: non_expanding_failures_SKIP) apply (simp add: non_expanding_failures_DIV) apply (simp add: non_expanding_failures_Act_prefix) apply (simp add: non_expanding_failures_Ext_pre_choice) apply (simp add: non_expanding_failures_Ext_choice non_expanding_traces_fstF) apply (simp add: non_expanding_failures_Int_choice) apply (simp add: non_expanding_failures_Rep_int_choice) apply (simp add: non_expanding_failures_IF) apply (simp add: non_expanding_failures_Parallel) (* hiding --> const *) apply (intro impI) apply (subgoal_tac "EX F. (failures (proc -- set) = (%M. F))") apply (erule exE) apply (simp) apply (simp add: non_expanding_Constant) apply (rule failures_noPN_Constant) apply (simp) apply (simp add: non_expanding_failures_Renaming) apply (simp add: non_expanding_failures_Seq_compo non_expanding_traces_fstF) (* Depth_res *) apply (simp add: non_expanding_failures_Depth_rest) apply (simp add: failures_def) apply (simp add: zero_rs_setF) apply (simp add: non_expanding_Constant) apply (simp add: non_expanding_failures_variable) done lemma non_expanding_failures: "noHide P ==> non_expanding (failures P)" by (simp add: non_expanding_failures_lm) (*=============================================================* | [[P]]Ff | *=============================================================*) lemma non_expanding_semFf: "noHide P ==> non_expanding [[P]]Ff" apply (simp add: semFf_def) apply (simp add: non_expanding_domF_decompo) apply (simp add: non_expanding_traces_fstF) apply (simp add: non_expanding_failures) done (*=============================================================* | [[P]]Ffun | *=============================================================*) lemma non_expanding_semFfun: "noHidefun Pf ==> non_expanding [[Pf]]Ffun" apply (simp add: semFfun_def) apply (simp add: prod_non_expand) apply (simp add: proj_fun_def comp_def) apply (simp add: noHidefun_def) apply (simp add: non_expanding_semFf) done (***************************************************************** | contraction | *****************************************************************) lemma contraction_alpha_failures_lm: "guarded P --> contraction_alpha (failures P) (1/2)" apply (induct_tac P) apply (simp add: contraction_alpha_failures_STOP) apply (simp add: contraction_alpha_failures_SKIP) apply (simp add: contraction_alpha_failures_DIV) apply (simp add: contraction_half_failures_Act_prefix non_expanding_failures) apply (simp add: contraction_half_failures_Ext_pre_choice non_expanding_failures) apply (simp add: contraction_alpha_failures_Ext_choice contraction_alpha_traces_fstF) apply (simp add: contraction_alpha_failures_Int_choice) apply (simp add: contraction_alpha_failures_Rep_int_choice) apply (simp add: contraction_alpha_failures_Rep_int_choice) apply (simp add: contraction_alpha_failures_IF) apply (simp add: contraction_alpha_failures_Parallel) (* hiding --> const *) apply (intro impI) apply (subgoal_tac "EX F. (failures (proc -- set) = (%M. F))") apply (erule exE) apply (simp add: contraction_alpha_Constant) apply (rule failures_noPN_Constant) apply (simp) apply (simp add: contraction_alpha_failures_Renaming) (* Seq_compo *) apply (simp) apply (intro conjI impI) apply (simp add: gSKIP_contraction_half_failures_Seq_compo non_expanding_failures contraction_alpha_traces_fstF) apply (simp add: contraction_alpha_failures_Seq_compo contraction_alpha_traces_fstF) (* Depth_res *) apply (simp add: contraction_alpha_failures_Depth_rest) apply (simp add: failures_def) apply (simp add: zero_rs_setF) apply (simp add: contraction_alpha_Constant) apply (simp add: non_expanding_failures_variable) done lemma contraction_alpha_failures: "guarded P ==> contraction_alpha (failures P) (1/2)" apply (simp add: contraction_alpha_failures_lm) done (*=============================================================* | [[P]]Ff | *=============================================================*) lemma contraction_alpha_semFf: "guarded P ==> contraction_alpha [[P]]Ff (1/2)" apply (simp add: semFf_def) apply (simp add: contraction_alpha_domF_decompo) apply (simp add: contraction_alpha_traces_fstF) apply (simp add: contraction_alpha_failures) done (*=============================================================* | [[P]]Ffun | *=============================================================*) lemma contraction_alpha_semFfun: "guardedfun Pf ==> contraction_alpha [[Pf]]Ffun (1/2)" apply (simp add: semFfun_def) apply (simp add: prod_contra_alpha) apply (simp add: proj_fun_def comp_def) apply (simp add: guardedfun_def) apply (simp add: contraction_alpha_semFf) done (*=============================================================* | contraction | *=============================================================*) lemma contraction_semFfun: "guardedfun Pf ==> contraction [[Pf]]Ffun" apply (simp add: contraction_def) apply (rule_tac x="1/2" in exI) apply (simp add:contraction_alpha_semFfun) done end
lemma non_expanding_traces_fstF:
noHide P ==> non_expanding (%M. traces P (fstF o M))
lemma contraction_alpha_traces_fstF:
guarded P ==> contraction_alpha (%M. traces P (fstF o M)) (1 / 2)
lemma map_alpha_failures_STOP:
0 ≤ alpha ==> map_alpha (failures STOP) alpha
lemma non_expanding_failures_STOP:
non_expanding (failures STOP)
lemma contraction_alpha_failures_STOP:
[| 0 ≤ alpha; alpha < 1 |] ==> contraction_alpha (failures STOP) alpha
lemma map_alpha_failures_SKIP:
0 ≤ alpha ==> map_alpha (failures SKIP) alpha
lemma non_expanding_failures_SKIP:
non_expanding (failures SKIP)
lemma contraction_alpha_failures_SKIP:
[| 0 ≤ alpha; alpha < 1 |] ==> contraction_alpha (failures SKIP) alpha
lemma map_alpha_failures_DIV:
0 ≤ alpha ==> map_alpha (failures DIV) alpha
lemma non_expanding_failures_DIV:
non_expanding (failures DIV)
lemma contraction_alpha_failures_DIV:
[| 0 ≤ alpha; alpha < 1 |] ==> contraction_alpha (failures DIV) alpha
lemma contraction_half_failures_Act_prefix_lm:
distance (failures (a -> P) M1.0, failures (a -> Q) M2.0) * 2 = distance (failures P M1.0, failures Q M2.0)
lemma contraction_half_failures_Act_prefix:
non_expanding (failures P) ==> contraction_alpha (failures (a -> P)) (1 / 2)
lemma contraction_failures_Act_prefix:
non_expanding (failures P) ==> contraction (failures (a -> P))
lemma non_expanding_failures_Act_prefix:
non_expanding (failures P) ==> non_expanding (failures (a -> P))
lemma Ext_pre_choice_Act_prefix_rest_setF_sub:
∀a∈X. failures (a -> Pf a) M1.0 .|. n ≤ failures (a -> Qf a) M2.0 .|. n ==> failures (? :X -> Pf) M1.0 .|. n ≤ failures (? :X -> Qf) M2.0 .|. n
lemma Ext_pre_choice_Act_prefix_rest_setF:
∀a∈X. failures (a -> Pf a) M1.0 .|. n = failures (a -> Qf a) M2.0 .|. n ==> failures (? :X -> Pf) M1.0 .|. n = failures (? :X -> Qf) M2.0 .|. n
lemma Ext_pre_choice_Act_prefix_distF_nonempty:
[| X ≠ {}; PQs = {(failures (a -> Pf a) M1.0, failures (a -> Qf a) M2.0) |a. a ∈ X} |] ==> ∃PQ. PQ ∈ PQs ∧ distance (failures (? :X -> Pf) M1.0, failures (? :X -> Qf) M2.0) ≤ distance (fst PQ, snd PQ)
lemma contraction_half_failures_Ext_pre_choice_lm:
[| X ≠ {}; ∀a. distance (failures (Pf a) M1.0, failures (Qf a) M2.0) ≤ distance (x1.0, x2.0) |] ==> distance (failures (? :X -> Pf) M1.0, failures (? :X -> Qf) M2.0) * 2 ≤ distance (x1.0, x2.0)
lemma contraction_half_failures_Ext_pre_choice:
∀a. non_expanding (failures (Pf a)) ==> contraction_alpha (failures (? :X -> Pf)) (1 / 2)
lemma contraction_failures_Ext_pre_choice:
∀a. non_expanding (failures (Pf a)) ==> contraction (failures (? :X -> Pf))
lemma non_expanding_failures_Ext_pre_choice:
∀a. non_expanding (failures (Pf a)) ==> non_expanding (failures (? :X -> Pf))
lemma Ext_choice_rest_setF_sub:
[| traces P1.0 (fstF o M1.0) .|. n ≤ traces P2.0 (fstF o M2.0) .|. n; traces Q1.0 (fstF o M1.0) .|. n ≤ traces Q2.0 (fstF o M2.0) .|. n; failures P1.0 M1.0 .|. n ≤ failures P2.0 M2.0 .|. n; failures Q1.0 M1.0 .|. n ≤ failures Q2.0 M2.0 .|. n |] ==> failures (P1.0 [+] Q1.0) M1.0 .|. n ≤ failures (P2.0 [+] Q2.0) M2.0 .|. n
lemma Ext_choice_rest_setF:
[| traces P1.0 (fstF o M1.0) .|. n = traces P2.0 (fstF o M2.0) .|. n; traces Q1.0 (fstF o M1.0) .|. n = traces Q2.0 (fstF o M2.0) .|. n; failures P1.0 M1.0 .|. n = failures P2.0 M2.0 .|. n; failures Q1.0 M1.0 .|. n = failures Q2.0 M2.0 .|. n |] ==> failures (P1.0 [+] Q1.0) M1.0 .|. n = failures (P2.0 [+] Q2.0) M2.0 .|. n
lemma Ext_choice_distF:
[| PQTs = {(traces P1.0 (fstF o M1.0), traces P2.0 (fstF o M2.0)), (traces Q1.0 (fstF o M1.0), traces Q2.0 (fstF o M2.0))}; PQFs = {(failures P1.0 M1.0, failures P2.0 M2.0), (failures Q1.0 M1.0, failures Q2.0 M2.0)} |] ==> (∃PQ. PQ ∈ PQTs ∧ distance (failures (P1.0 [+] Q1.0) M1.0, failures (P2.0 [+] Q2.0) M2.0) ≤ distance (fst PQ, snd PQ)) ∨ (∃PQ. PQ ∈ PQFs ∧ distance (failures (P1.0 [+] Q1.0) M1.0, failures (P2.0 [+] Q2.0) M2.0) ≤ distance (fst PQ, snd PQ))
lemma map_alpha_failures_Ext_choice_lm:
[| distance (traces P1.0 (fstF o M1.0), traces P2.0 (fstF o M2.0)) ≤ alpha * distance (x1.0, x2.0); distance (traces Q1.0 (fstF o M1.0), traces Q2.0 (fstF o M2.0)) ≤ alpha * distance (x1.0, x2.0); distance (failures P1.0 M1.0, failures P2.0 M2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures Q1.0 M1.0, failures Q2.0 M2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (P1.0 [+] Q1.0) M1.0, failures (P2.0 [+] Q2.0) M2.0) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failures_Ext_choice:
[| map_alpha (%M. traces P (fstF o M)) alpha; map_alpha (%M. traces Q (fstF o M)) alpha; map_alpha (failures P) alpha; map_alpha (failures Q) alpha |] ==> map_alpha (failures (P [+] Q)) alpha
lemma non_expanding_failures_Ext_choice:
[| non_expanding (%M. traces P (fstF o M)); non_expanding (%M. traces Q (fstF o M)); non_expanding (failures P); non_expanding (failures Q) |] ==> non_expanding (failures (P [+] Q))
lemma contraction_alpha_failures_Ext_choice:
[| contraction_alpha (%M. traces P (fstF o M)) alpha; contraction_alpha (%M. traces Q (fstF o M)) alpha; contraction_alpha (failures P) alpha; contraction_alpha (failures Q) alpha |] ==> contraction_alpha (failures (P [+] Q)) alpha
lemma Int_choice_rest_setF_sub:
[| failures P1.0 M1.0 .|. n ≤ failures P2.0 M2.0 .|. n; failures Q1.0 M1.0 .|. n ≤ failures Q2.0 M2.0 .|. n |] ==> failures (P1.0 |~| Q1.0) M1.0 .|. n ≤ failures (P2.0 |~| Q2.0) M2.0 .|. n
lemma Int_choice_rest_setF:
[| failures P1.0 M1.0 .|. n = failures P2.0 M2.0 .|. n; failures Q1.0 M1.0 .|. n = failures Q2.0 M2.0 .|. n |] ==> failures (P1.0 |~| Q1.0) M1.0 .|. n = failures (P2.0 |~| Q2.0) M2.0 .|. n
lemma Int_choice_distF:
PQs = {(failures P1.0 M1.0, failures P2.0 M2.0), (failures Q1.0 M1.0, failures Q2.0 M2.0)} ==> ∃PQ. PQ ∈ PQs ∧ distance (failures (P1.0 |~| Q1.0) M1.0, failures (P2.0 |~| Q2.0) M2.0) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_failures_Int_choice_lm:
[| distance (failures P1.0 M1.0, failures P2.0 M2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures Q1.0 M1.0, failures Q2.0 M2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (P1.0 |~| Q1.0) M1.0, failures (P2.0 |~| Q2.0) M2.0) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failures_Int_choice:
[| map_alpha (failures P) alpha; map_alpha (failures Q) alpha |] ==> map_alpha (failures (P |~| Q)) alpha
lemma non_expanding_failures_Int_choice:
[| non_expanding (failures P); non_expanding (failures Q) |] ==> non_expanding (failures (P |~| Q))
lemma contraction_alpha_failures_Int_choice:
[| contraction_alpha (failures P) alpha; contraction_alpha (failures Q) alpha |] ==> contraction_alpha (failures (P |~| Q)) alpha
lemma Rep_int_choice_rest_setF_sub:
∀c∈sumset C. failures (Pf c) M1.0 .|. n ≤ failures (Qf c) M2.0 .|. n ==> failures (!! :C .. Pf) M1.0 .|. n ≤ failures (!! :C .. Qf) M2.0 .|. n
lemma Rep_int_choice_rest_setF:
∀c∈sumset C. failures (Pf c) M1.0 .|. n = failures (Qf c) M2.0 .|. n ==> failures (!! :C .. Pf) M1.0 .|. n = failures (!! :C .. Qf) M2.0 .|. n
lemma Rep_int_choice_distF_nonempty:
[| sumset C ≠ {}; PQs = {(failures (Pf c) M1.0, failures (Qf c) M2.0) |c. c ∈ sumset C} |] ==> ∃PQ. PQ ∈ PQs ∧ distance (failures (!! :C .. Pf) M1.0, failures (!! :C .. Qf) M2.0) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_failures_Rep_int_choice_lm:
[| sumset C ≠ {}; ∀c. distance (failures (Pf c) M1.0, failures (Qf c) M2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (!! :C .. Pf) M1.0, failures (!! :C .. Qf) M2.0) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failures_Rep_int_choice:
∀c. map_alpha (failures (Pf c)) alpha ==> map_alpha (failures (!! :C .. Pf)) alpha
lemma non_expanding_failures_Rep_int_choice:
∀c. non_expanding (failures (Pf c)) ==> non_expanding (failures (!! :C .. Pf))
lemma contraction_alpha_failures_Rep_int_choice:
∀c. contraction_alpha (failures (Pf c)) alpha ==> contraction_alpha (failures (!! :C .. Pf)) alpha
lemma IF_rest_setF_sub:
[| failures P1.0 M1.0 .|. n ≤ failures P2.0 M2.0 .|. n; failures Q1.0 M1.0 .|. n ≤ failures Q2.0 M2.0 .|. n |] ==> failures (IF b THEN P1.0 ELSE Q1.0) M1.0 .|. n ≤ failures (IF b THEN P2.0 ELSE Q2.0) M2.0 .|. n
lemma IF_rest_setF:
[| failures P1.0 M1.0 .|. n = failures P2.0 M2.0 .|. n; failures Q1.0 M1.0 .|. n = failures Q2.0 M2.0 .|. n |] ==> failures (IF b THEN P1.0 ELSE Q1.0) M1.0 .|. n = failures (IF b THEN P2.0 ELSE Q2.0) M2.0 .|. n
lemma IF_distF:
PQs = {(failures P1.0 M1.0, failures P2.0 M2.0), (failures Q1.0 M1.0, failures Q2.0 M2.0)} ==> ∃PQ. PQ ∈ PQs ∧ distance (failures (IF b THEN P1.0 ELSE Q1.0) M1.0, failures (IF b THEN P2.0 ELSE Q2.0) M2.0) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_failures_IF_lm:
[| distance (failures P1.0 M1.0, failures P2.0 M2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures Q1.0 M1.0, failures Q2.0 M2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (IF b THEN P1.0 ELSE Q1.0) M1.0, failures (IF b THEN P2.0 ELSE Q2.0) M2.0) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failures_IF:
[| map_alpha (failures P) alpha; map_alpha (failures Q) alpha |] ==> map_alpha (failures (IF b THEN P ELSE Q)) alpha
lemma non_expanding_failures_IF:
[| non_expanding (failures P); non_expanding (failures Q) |] ==> non_expanding (failures (IF b THEN P ELSE Q))
lemma contraction_alpha_failures_IF:
[| contraction_alpha (failures P) alpha; contraction_alpha (failures Q) alpha |] ==> contraction_alpha (failures (IF b THEN P ELSE Q)) alpha
lemma Parallel_rest_setF_sub:
[| failures P1.0 M1.0 .|. n ≤ failures P2.0 M2.0 .|. n; failures Q1.0 M1.0 .|. n ≤ failures Q2.0 M2.0 .|. n |] ==> failures (P1.0 |[X]| Q1.0) M1.0 .|. n ≤ failures (P2.0 |[X]| Q2.0) M2.0 .|. n
lemma Parallel_rest_setF:
[| failures P1.0 M1.0 .|. n = failures P2.0 M2.0 .|. n; failures Q1.0 M1.0 .|. n = failures Q2.0 M2.0 .|. n |] ==> failures (P1.0 |[X]| Q1.0) M1.0 .|. n = failures (P2.0 |[X]| Q2.0) M2.0 .|. n
lemma Parallel_distF:
PQs = {(failures P1.0 M1.0, failures P2.0 M2.0), (failures Q1.0 M1.0, failures Q2.0 M2.0)} ==> ∃PQ. PQ ∈ PQs ∧ distance (failures (P1.0 |[X]| Q1.0) M1.0, failures (P2.0 |[X]| Q2.0) M2.0) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_failures_Parallel_lm:
[| distance (failures P1.0 M1.0, failures P2.0 M2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures Q1.0 M1.0, failures Q2.0 M2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (P1.0 |[X]| Q1.0) M1.0, failures (P2.0 |[X]| Q2.0) M2.0) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failures_Parallel:
[| map_alpha (failures P) alpha; map_alpha (failures Q) alpha |] ==> map_alpha (failures (P |[X]| Q)) alpha
lemma non_expanding_failures_Parallel:
[| non_expanding (failures P); non_expanding (failures Q) |] ==> non_expanding (failures (P |[X]| Q))
lemma contraction_alpha_failures_Parallel:
[| contraction_alpha (failures P) alpha; contraction_alpha (failures Q) alpha |] ==> contraction_alpha (failures (P |[X]| Q)) alpha
lemma Renaming_rest_setF_sub:
failures P M1.0 .|. n ≤ failures Q M2.0 .|. n ==> failures (P [[r]]) M1.0 .|. n ≤ failures (Q [[r]]) M2.0 .|. n
lemma Renaming_rest_setF:
failures P M1.0 .|. n = failures Q M2.0 .|. n ==> failures (P [[r]]) M1.0 .|. n = failures (Q [[r]]) M2.0 .|. n
lemma Renaming_distF:
distance (failures (P [[r]]) M1.0, failures (Q [[r]]) M2.0) ≤ distance (failures P M1.0, failures Q M2.0)
lemma map_alpha_failures_Renaming_lm:
distance (failures P M1.0, failures Q M2.0) ≤ alpha * distance (x1.0, x2.0) ==> distance (failures (P [[r]]) M1.0, failures (Q [[r]]) M2.0) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failures_Renaming:
map_alpha (failures P) alpha ==> map_alpha (failures (P [[r]])) alpha
lemma non_expanding_failures_Renaming:
non_expanding (failures P) ==> non_expanding (failures (P [[r]]))
lemma contraction_alpha_failures_Renaming:
contraction_alpha (failures P) alpha ==> contraction_alpha (failures (P [[r]])) alpha
lemma Seq_compo_rest_setF_sub:
[| traces P1.0 (fstF o M1.0) .|. n ≤ traces P2.0 (fstF o M2.0) .|. n; failures P1.0 M1.0 .|. n ≤ failures P2.0 M2.0 .|. n; failures Q1.0 M1.0 .|. n ≤ failures Q2.0 M2.0 .|. n |] ==> failures (P1.0 ;; Q1.0) M1.0 .|. n ≤ failures (P2.0 ;; Q2.0) M2.0 .|. n
lemma Seq_compo_rest_setF:
[| traces P1.0 (fstF o M1.0) .|. n = traces P2.0 (fstF o M2.0) .|. n; failures P1.0 M1.0 .|. n = failures P2.0 M2.0 .|. n; failures Q1.0 M1.0 .|. n = failures Q2.0 M2.0 .|. n |] ==> failures (P1.0 ;; Q1.0) M1.0 .|. n = failures (P2.0 ;; Q2.0) M2.0 .|. n
lemma Seq_compo_distF:
[| PQTs = {(traces P1.0 (fstF o M1.0), traces P2.0 (fstF o M2.0))}; PQFs = {(failures P1.0 M1.0, failures P2.0 M2.0), (failures Q1.0 M1.0, failures Q2.0 M2.0)} |] ==> (∃PQ. PQ ∈ PQTs ∧ distance (failures (P1.0 ;; Q1.0) M1.0, failures (P2.0 ;; Q2.0) M2.0) ≤ distance (fst PQ, snd PQ)) ∨ (∃PQ. PQ ∈ PQFs ∧ distance (failures (P1.0 ;; Q1.0) M1.0, failures (P2.0 ;; Q2.0) M2.0) ≤ distance (fst PQ, snd PQ))
lemma map_alpha_failures_Seq_compo_lm:
[| distance (traces P1.0 (fstF o M1.0), traces P2.0 (fstF o M2.0)) ≤ alpha * distance (x1.0, x2.0); distance (failures P1.0 M1.0, failures P2.0 M2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures Q1.0 M1.0, failures Q2.0 M2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (P1.0 ;; Q1.0) M1.0, failures (P2.0 ;; Q2.0) M2.0) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failures_Seq_compo:
[| map_alpha (%M. traces P (fstF o M)) alpha; map_alpha (failures P) alpha; map_alpha (failures Q) alpha |] ==> map_alpha (failures (P ;; Q)) alpha
lemma non_expanding_failures_Seq_compo:
[| non_expanding (%M. traces P (fstF o M)); non_expanding (failures P); non_expanding (failures Q) |] ==> non_expanding (failures (P ;; Q))
lemma contraction_alpha_failures_Seq_compo:
[| contraction_alpha (%M. traces P (fstF o M)) alpha; contraction_alpha (failures P) alpha; contraction_alpha (failures Q) alpha |] ==> contraction_alpha (failures (P ;; Q)) alpha
lemma gSKIP_Seq_compo_rest_setF_sub:
[| traces P1.0 (fstF o M1.0) .|. Suc n ≤ traces P2.0 (fstF o M2.0) .|. Suc n; failures P1.0 M1.0 .|. Suc n ≤ failures P2.0 M2.0 .|. Suc n; failures Q1.0 M1.0 .|. n ≤ failures Q2.0 M2.0 .|. n; <Tick> ~:t traces P1.0 (fstF o M1.0); <Tick> ~:t traces P2.0 (fstF o M2.0) |] ==> failures (P1.0 ;; Q1.0) M1.0 .|. Suc n ≤ failures (P2.0 ;; Q2.0) M2.0 .|. Suc n
lemma gSKIP_Seq_compo_rest_setF:
[| traces P1.0 (fstF o M1.0) .|. Suc n = traces P2.0 (fstF o M2.0) .|. Suc n; failures P1.0 M1.0 .|. Suc n = failures P2.0 M2.0 .|. Suc n; failures Q1.0 M1.0 .|. n = failures Q2.0 M2.0 .|. n; <Tick> ~:t traces P1.0 (fstF o M1.0); <Tick> ~:t traces P2.0 (fstF o M2.0) |] ==> failures (P1.0 ;; Q1.0) M1.0 .|. Suc n = failures (P2.0 ;; Q2.0) M2.0 .|. Suc n
lemma gSKIP_map_alpha_failures_Seq_compo_lm:
[| distance (traces P1.0 (fstF o M1.0), traces P2.0 (fstF o M2.0)) * 2 ≤ (1 / 2) ^ n; distance (failures P1.0 M1.0, failures P2.0 M2.0) * 2 ≤ (1 / 2) ^ n; distance (failures Q1.0 M1.0, failures Q2.0 M2.0) ≤ (1 / 2) ^ n; <Tick> ~:t traces P1.0 (fstF o M1.0); <Tick> ~:t traces P2.0 (fstF o M2.0) |] ==> distance (failures (P1.0 ;; Q1.0) M1.0, failures (P2.0 ;; Q2.0) M2.0) * 2 ≤ (1 / 2) ^ n
lemma gSKIP_contraction_half_failures_Seq_compo:
[| contraction_alpha (%M. traces P (fstF o M)) (1 / 2); contraction_alpha (failures P) (1 / 2); non_expanding (failures Q); gSKIP P |] ==> contraction_alpha (failures (P ;; Q)) (1 / 2)
lemma Depth_rest_rest_setF:
failures P M1.0 .|. n = failures Q M2.0 .|. n ==> failures (P |. m) M1.0 .|. n = failures (Q |. m) M2.0 .|. n
lemma Depth_rest_distF:
distance (failures (P |. m) M1.0, failures (Q |. m) M2.0) ≤ distance (failures P M1.0, failures Q M2.0)
lemma map_alpha_failures_Depth_rest_lm:
distance (failures P M1.0, failures Q M2.0) ≤ alpha * distance (x1.0, x2.0) ==> distance (failures (P |. m) M1.0, failures (Q |. m) M2.0) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failures_Depth_rest:
map_alpha (failures P) alpha ==> map_alpha (failures (P |. n)) alpha
lemma non_expanding_failures_Depth_rest:
non_expanding (failures P) ==> non_expanding (failures (P |. n))
lemma contraction_alpha_failures_Depth_rest:
contraction_alpha (failures P) alpha ==> contraction_alpha (failures (P |. n)) alpha
lemma continuous_failures_variable_lm:
non_expanding (sndF o (%M. M p))
lemma non_expanding_failures_variable:
non_expanding (failures ($p))
lemma non_expanding_failures_lm:
noHide P --> non_expanding (failures P)
lemma non_expanding_failures:
noHide P ==> non_expanding (failures P)
lemma non_expanding_semFf:
noHide P ==> non_expanding [[P]]Ff
lemma non_expanding_semFfun:
noHidefun Pf ==> non_expanding [[Pf]]Ffun
lemma contraction_alpha_failures_lm:
guarded P --> contraction_alpha (failures P) (1 / 2)
lemma contraction_alpha_failures:
guarded P ==> contraction_alpha (failures P) (1 / 2)
lemma contraction_alpha_semFf:
guarded P ==> contraction_alpha [[P]]Ff (1 / 2)
lemma contraction_alpha_semFfun:
guardedfun Pf ==> contraction_alpha [[Pf]]Ffun (1 / 2)
lemma contraction_semFfun:
guardedfun Pf ==> contraction [[Pf]]Ffun