Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_contraction (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| December 2004 |
| July 2005 (modified) |
| August 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| October 2005 (modified) |
| November 2005 (modified) |
| March 2007 (modified) |
| August 2007 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_T_contraction
imports CSP_T_traces RS_prod
begin
(*****************************************************************
1. contraction traces
2. contraction [[ ]]Tfun
*****************************************************************)
(*============================================*
| gSKIP |
*============================================*)
lemma gSKIP_to_Tick_notin_traces:
"ALL P M. gSKIP P --> <Tick> ~:t traces (P) M"
apply (intro allI)
apply (induct_tac P)
apply (simp_all add: in_traces)
apply (intro impI conjI allI)
apply (erule noTick_rmTickE)
apply (simp)
apply (auto)
apply (erule noTick_rmTickE)
apply (simp)
apply (erule noTick_rmTickE)
apply (simp)
done
(*--------------------------------*
| STOP,SKIP,DIV |
*--------------------------------*)
(*** Constant_contraction ***)
lemma map_alpha_Constant: "0 <= alpha ==> map_alpha (%M. C) alpha"
apply (simp add: map_alpha_def)
apply (simp add: real_mult_order_eq)
done
(*** non_expanding_Constant ***)
lemma non_expanding_Constant: "non_expanding (%M. C)"
by (simp add: non_expanding_def map_alpha_Constant)
(*** Constant_contraction_alpha ***)
lemma contraction_alpha_Constant:
"[| 0 <= alpha ; alpha < 1 |] ==> contraction_alpha (%M. C) alpha"
by (simp add: contraction_alpha_def map_alpha_Constant)
(*** STOP ***)
lemma map_alpha_traces_STOP:
"0 <= alpha ==> map_alpha (traces (STOP)) alpha"
by (simp add: traces_def map_alpha_Constant)
lemma non_expanding_traces_STOP:
"non_expanding (traces (STOP))"
by (simp add: non_expanding_def map_alpha_traces_STOP)
lemma contraction_alpha_traces_STOP:
"[| 0 <= alpha ; alpha < 1 |] ==> contraction_alpha (traces (STOP)) alpha"
by (simp add: traces_def contraction_alpha_Constant)
(*** SKIP ***)
lemma map_alpha_traces_SKIP:
"0 <= alpha ==> map_alpha (traces (SKIP)) alpha"
by (simp add: traces_def map_alpha_Constant)
lemma non_expanding_traces_SKIP:
"non_expanding (traces (SKIP))"
by (simp add: non_expanding_def map_alpha_traces_SKIP)
lemma contraction_alpha_traces_SKIP:
"[| 0 <= alpha ; alpha < 1 |] ==> contraction_alpha (traces (SKIP)) alpha"
by (simp add: traces_def contraction_alpha_Constant)
(*** DIV ***)
lemma map_alpha_traces_DIV:
"0 <= alpha ==> map_alpha (traces (DIV)) alpha"
by (simp add: traces_def map_alpha_Constant)
lemma non_expanding_traces_DIV:
"non_expanding (traces (DIV))"
by (simp add: non_expanding_def map_alpha_traces_DIV)
lemma contraction_alpha_traces_DIV:
"[| 0 <= alpha ; alpha < 1 |] ==> contraction_alpha (traces (DIV)) alpha"
by (simp add: traces_def contraction_alpha_Constant)
(*--------------------------------*
| Act_prefix |
*--------------------------------*)
lemma contraction_half_traces_Act_prefix_lm:
"distance (traces (a -> P) M1, traces (a -> Q) M2) * 2
= distance (traces P M1, traces Q M2)"
apply (rule sym)
apply (rule rest_Suc_dist_half[simplified])
apply (rule allI)
apply (simp add: rest_domT_eq_iff)
apply (rule iffI)
(* => *)
apply (rule allI)
apply (simp add: in_traces)
apply (rule iffI)
(* => *)
apply (elim conjE exE disjE, simp)
apply (drule_tac x="sa" in spec)
apply (simp)
(* <= *)
apply (elim conjE exE disjE, simp)
apply (drule_tac x="sa" in spec)
apply (simp)
(* <= *)
apply (rule allI)
apply (drule_tac x="<Ev a> ^^ s" in spec)
apply (simp add: in_traces)
done
(*** contraction_half ***)
lemma contraction_half_traces_Act_prefix:
"non_expanding (traces P)
==> contraction_alpha (traces (a -> P)) (1 / 2)"
apply (simp add: contraction_alpha_def non_expanding_def map_alpha_def)
apply (intro allI)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (simp add: contraction_half_traces_Act_prefix_lm)
done
(*** contraction ***)
lemma contraction_traces_Act_prefix:
"non_expanding (traces P)
==> contraction (traces (a -> P))"
apply (simp add: contraction_def)
apply (rule_tac x="1/2" in exI)
by (simp add: contraction_half_traces_Act_prefix)
(*** non_expanding ***)
lemma non_expanding_traces_Act_prefix:
"non_expanding (traces P)
==> non_expanding (traces (a -> P))"
apply (rule contraction_non_expanding)
by (simp add: contraction_traces_Act_prefix)
(*--------------------------------*
| Ext_pre_choice |
*--------------------------------*)
(*** rest_domT (subset) ***)
lemma Ext_pre_choice_Act_prefix_rest_domT_sub:
"[| ALL a : X.
traces (a -> Pf a) M1 .|. n <= traces (a -> Qf a) M2 .|. n |]
==> traces (? a:X -> Pf a) M1 .|. n <=
traces (? a:X -> Qf a) M2 .|. n"
apply (simp add: subdomT_iff)
apply (intro allI impI)
apply (simp add: in_rest_domT)
apply (simp add: in_traces)
apply (elim conjE exE disjE)
apply (simp_all)
apply (drule_tac x="a" in bspec, simp)
apply (drule_tac x="t" in spec)
apply (simp add: in_traces)
done
(*** rest_domT (equal) ***)
lemma Ext_pre_choice_Act_prefix_rest_domT:
"[| ALL a : X.
traces (a -> Pf a) M1 .|. n = traces (a -> Qf a) M2 .|. n |]
==> traces (? a:X -> Pf a) M1 .|. n =
traces (? a:X -> Qf a) M2 .|. n"
apply (rule order_antisym)
by (simp_all add: Ext_pre_choice_Act_prefix_rest_domT_sub)
(*** distT lemma ***)
lemma Ext_pre_choice_Act_prefix_distT_nonempty:
"[| X ~= {} ; PQs = {(traces (a -> Pf a) M1, traces (a -> Qf a) M2)|a. a : X} |]
==> (EX PQ. PQ:PQs &
distance(traces (? a:X -> Pf a) M1, traces (? a:X -> Qf a) M2)
<= distance(fst PQ, snd PQ))"
apply (rule rest_to_dist_pair)
apply (force)
apply (intro allI impI)
apply (rule Ext_pre_choice_Act_prefix_rest_domT)
apply (rule ballI)
apply (simp)
apply (drule_tac x="traces (a -> Pf a) M1" in spec)
apply (drule_tac x="traces (a -> Qf a) M2" in spec)
by (auto)
(*** contraction lemma ***)
lemma contraction_half_traces_Ext_pre_choice_lm:
"[| X ~= {} ; ALL a. distance (traces (Pf a) M1, traces (Qf a) M2)
<= distance (x1, x2) |]
==> distance (traces (? a:X -> Pf a) M1, traces (? a:X -> Qf a) M2) * 2
<= distance (x1, x2)"
apply (insert Ext_pre_choice_Act_prefix_distT_nonempty
[of X "{(traces (a -> Pf a) M1, traces (a -> Qf a) M2) |a. a : X}" Pf M1 Qf M2])
apply (simp)
apply (elim conjE exE)
apply (simp)
apply (subgoal_tac
"distance (traces (aa -> Pf aa) M1, traces (aa -> Qf aa) M2) * 2
= distance (traces (Pf aa) M1, traces (Qf aa) M2)")
apply (drule_tac x="aa" in spec)
apply (force)
by (simp add: contraction_half_traces_Act_prefix_lm)
(*** contraction_half ***)
lemma contraction_half_traces_Ext_pre_choice:
"ALL a. non_expanding (traces (Pf a))
==> contraction_alpha (traces (? :X -> Pf)) (1 / 2)"
apply (simp add: contraction_alpha_def non_expanding_def map_alpha_def)
apply (case_tac "X = {}")
apply (simp add: traces_def)
by (simp add: contraction_half_traces_Ext_pre_choice_lm)
(*** Ext_pre_choice_evalT_contraction ***)
lemma contraction_traces_Ext_pre_choice:
"ALL a. non_expanding (traces (Pf a))
==> contraction (traces (? :X -> Pf))"
apply (simp add: contraction_def)
apply (rule_tac x="1/2" in exI)
by (simp add: contraction_half_traces_Ext_pre_choice)
(*** Ext_pre_choice_evalT_non_expanding ***)
lemma non_expanding_traces_Ext_pre_choice:
"ALL a. non_expanding (traces (Pf a))
==> non_expanding (traces (? :X -> Pf))"
apply (rule contraction_non_expanding)
by (simp add: contraction_traces_Ext_pre_choice)
(*--------------------------------*
| Ext_choice |
*--------------------------------*)
(*** rest_domT (subset) ***)
lemma Ext_choice_rest_domT_sub:
"[| traces P1 M1 .|. n <= traces P2 M2 .|. n ;
traces Q1 M1 .|. n <= traces Q2 M2 .|. n |]
==> traces (P1 [+] Q1) M1 .|. n <= traces (P2 [+] Q2) M2 .|. n"
apply (simp add: subdomT_iff)
apply (intro allI impI)
apply (simp add: in_rest_domT)
apply (simp add: in_traces)
by (auto)
(*** rest_domT (equal) ***)
lemma Ext_choice_rest_domT:
"[| traces P1 M1 .|. n = traces P2 M2 .|. n ;
traces Q1 M1 .|. n = traces Q2 M2 .|. n |]
==> traces (P1 [+] Q1) M1 .|. n = traces (P2 [+] Q2) M2 .|. n"
apply (rule order_antisym)
by (simp_all add: Ext_choice_rest_domT_sub)
(*** distT lemma ***)
lemma Ext_choice_distT:
"PQs = {(traces P1 M1, traces P2 M2), (traces Q1 M1, traces Q2 M2)}
==> (EX PQ. PQ:PQs &
distance(traces (P1 [+] Q1) M1, traces (P2 [+] Q2) M2)
<= distance((fst PQ), (snd PQ)))"
apply (rule rest_to_dist_pair)
by (auto intro: Ext_choice_rest_domT)
(*** map_alpha T lemma ***)
lemma map_alpha_traces_Ext_choice_lm:
"[| distance (traces P1 M1, traces P2 M2) <= alpha * distance (x1, x2) ;
distance (traces Q1 M1, traces Q2 M2) <= alpha * distance (x1, x2) |]
==> distance (traces (P1 [+] Q1) M1, traces (P2 [+] Q2) M2)
<= alpha * distance (x1, x2)"
apply (insert Ext_choice_distT)
apply (insert Ext_choice_distT
[of "{(traces P1 M1, traces P2 M2), (traces Q1 M1, traces Q2 M2)}"
P1 M1 P2 M2 Q1 Q2])
by (auto)
(*** map_alpha ***)
lemma map_alpha_traces_Ext_choice:
"[| map_alpha (traces P) alpha ; map_alpha (traces Q) alpha |]
==> map_alpha (traces (P [+] Q)) alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
by (simp add: map_alpha_traces_Ext_choice_lm)
(*** non_expanding ***)
lemma non_expanding_traces_Ext_choice:
"[| non_expanding (traces P) ; non_expanding (traces Q) |]
==> non_expanding (traces (P [+] Q))"
by (simp add: non_expanding_def map_alpha_traces_Ext_choice)
(*** contraction ***)
lemma contraction_alpha_traces_Ext_choice:
"[| contraction_alpha (traces P) alpha ;
contraction_alpha (traces Q) alpha|]
==> contraction_alpha (traces (P [+] Q)) alpha"
by (simp add: contraction_alpha_def map_alpha_traces_Ext_choice)
(*--------------------------------*
| Int_choice |
*--------------------------------*)
(*** map_alpha ***)
lemma map_alpha_traces_Int_choice:
"[| map_alpha (traces P) alpha ; map_alpha (traces Q) alpha |]
==> map_alpha (traces (P |~| Q)) alpha"
by (simp add: map_alpha_traces_Ext_choice traces_Int_choice_Ext_choice)
(*** non_expanding ***)
lemma non_expanding_traces_Int_choice:
"[| non_expanding (traces P) ; non_expanding (traces Q) |]
==> non_expanding (traces (P |~| Q))"
by (simp add: non_expanding_traces_Ext_choice traces_Int_choice_Ext_choice)
(*** contraction ***)
lemma contraction_alpha_traces_Int_choice:
"[| contraction_alpha (traces P) alpha ;
contraction_alpha (traces Q) alpha|]
==> contraction_alpha (traces (P |~| Q)) alpha"
by (simp add: contraction_alpha_traces_Ext_choice traces_Int_choice_Ext_choice)
(*--------------------------------*
| Rep_int_choice |
*--------------------------------*)
(*** rest_domT (subset) ***)
lemma Rep_int_choice_rest_domT_sub:
"[| ALL c : sumset C.
traces (Pf c) M1 .|. n <= traces (Qf c) M2 .|. n |]
==> traces (!! :C .. Pf) M1 .|. n <=
traces (!! :C .. Qf) M2 .|. n"
apply (simp add: subdomT_iff)
apply (intro allI impI)
apply (simp add: in_rest_domT)
apply (simp add: in_traces)
by (auto)
(*** rest_domT (equal) ***)
lemma Rep_int_choice_rest_domT:
"[| ALL c : sumset C.
traces (Pf c) M1 .|. n = traces (Qf c) M2 .|. n |]
==> traces (!! :C .. Pf) M1 .|. n =
traces (!! :C .. Qf) M2 .|. n"
apply (rule order_antisym)
by (simp_all add: Rep_int_choice_rest_domT_sub)
(*** distT lemma ***)
lemma Rep_int_choice_distT_nonempty:
"[| sumset C ~= {} ;
PQs = {(traces (Pf c) M1, traces (Qf c) M2)|c. c : sumset C} |]
==> (EX PQ. PQ:PQs &
distance(traces (!! :C .. Pf) M1, traces (!! :C .. Qf) M2)
<= distance(fst PQ, snd PQ))"
apply (rule rest_to_dist_pair)
apply (fast)
apply (intro allI impI)
apply (rule Rep_int_choice_rest_domT)
by (auto)
(*** map_alpha T lemma ***)
lemma map_alpha_traces_Rep_int_choice_lm:
"[| sumset C ~= {} ;
ALL c. distance (traces (Pf c) M1, traces (Qf c) M2)
<= alpha * distance (x1, x2) |]
==> distance(traces(!! :C .. Pf) M1, (traces(!! :C .. Qf) M2))
<= alpha * distance(x1, x2)"
apply (insert Rep_int_choice_distT_nonempty
[of C "{(traces (Pf c) M1, traces (Qf c) M2)|c. c : sumset C}"
Pf M1 Qf M2])
apply (simp)
apply (elim conjE exE, simp)
apply (drule_tac x="c" in spec)
by (force)
(*** map_alpha ***)
lemma map_alpha_traces_Rep_int_choice:
"ALL c. map_alpha (traces (Pf c)) alpha
==> map_alpha (traces (!! :C .. Pf)) alpha"
apply (simp add: map_alpha_def)
apply (case_tac "sumset C = {}")
apply (simp add: traces_def)
apply (simp add: real_mult_order_eq)
apply (simp add: map_alpha_traces_Rep_int_choice_lm)
done
(*** non_expanding ***)
lemma non_expanding_traces_Rep_int_choice:
"ALL c. non_expanding (traces (Pf c))
==> non_expanding (traces (!! :C .. Pf))"
by (simp add: non_expanding_def map_alpha_traces_Rep_int_choice)
(*** Rep_int_choice_evalT_contraction_alpha ***)
lemma contraction_alpha_traces_Rep_int_choice:
"ALL c. contraction_alpha (traces (Pf c)) alpha
==> contraction_alpha (traces (!! :C .. Pf)) alpha"
by (simp add: contraction_alpha_def map_alpha_traces_Rep_int_choice)
(*--------------------------------*
| IF |
*--------------------------------*)
(*** rest_domT (subset) ***)
lemma IF_rest_domT_sub:
"[| traces P1 M1 .|. n <= traces P2 M2 .|. n ;
traces Q1 M1 .|. n <= traces Q2 M2 .|. n |]
==> traces (IF b THEN P1 ELSE Q1) M1 .|. n <=
traces (IF b THEN P2 ELSE Q2) M2 .|. n"
apply (simp add: subdomT_iff)
apply (intro allI impI)
apply (simp add: in_rest_domT)
apply (simp add: in_traces)
done
(*** rest_domT (equal) ***)
lemma IF_rest_domT:
"[| traces P1 M1 .|. n = traces P2 M2 .|. n ;
traces Q1 M1 .|. n = traces Q2 M2 .|. n |]
==> traces (IF b THEN P1 ELSE Q1) M1 .|. n =
traces (IF b THEN P2 ELSE Q2) M2 .|. n"
apply (rule order_antisym)
by (simp_all add: IF_rest_domT_sub)
(*** distT lemma ***)
lemma IF_distT:
"PQs = {(traces P1 M1, traces P2 M2), (traces Q1 M1, traces Q2 M2)}
==> (EX PQ. PQ:PQs &
distance(traces (IF b THEN P1 ELSE Q1) M1,
traces (IF b THEN P2 ELSE Q2) M2)
<= distance((fst PQ), (snd PQ)))"
apply (rule rest_to_dist_pair)
by (auto intro: IF_rest_domT)
(*** map_alpha T lemma (not used) ***)
lemma map_alpha_traces_IF_lm:
"[| distance (traces P1 M1, traces P2 M2) <= alpha * distance (x1, x2) ;
distance (traces Q1 M1, traces Q2 M2) <= alpha * distance (x1, x2) |]
==> distance(traces (IF b THEN P1 ELSE Q1) M1,
traces (IF b THEN P2 ELSE Q2) M2)
<= alpha * distance (x1, x2)"
apply (insert IF_distT
[of "{(traces P1 M1, traces P2 M2),
(traces Q1 M1, traces Q2 M2)}" P1 M1 P2 M2 Q1 Q2 b])
by (auto)
(*** map_alpha ***)
lemma map_alpha_traces_IF:
"[| map_alpha (traces P) alpha ; map_alpha (traces Q) alpha |]
==> map_alpha (traces (IF b THEN P ELSE Q)) alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
apply (simp add: traces_def)
done
(*** non_expanding ***)
lemma non_expanding_traces_IF:
"[| non_expanding (traces P) ; non_expanding (traces Q) |]
==> non_expanding (traces (IF b THEN P ELSE Q))"
by (simp add: non_expanding_def map_alpha_traces_IF)
(*** contraction_alpha ***)
lemma contraction_alpha_traces_IF:
"[| contraction_alpha (traces P) alpha ; contraction_alpha (traces Q) alpha|]
==> contraction_alpha (traces (IF b THEN P ELSE Q)) alpha"
by (simp add: contraction_alpha_def map_alpha_traces_IF)
(*--------------------------------*
| Parallel |
*--------------------------------*)
(*** rest_domT (subset) ***)
lemma Parallel_rest_domT_sub:
"[| traces P1 M1 .|. n <= traces P2 M2 .|. n ;
traces Q1 M1 .|. n <= traces Q2 M2 .|. n |]
==> traces (P1 |[X]| Q1) M1 .|. n <= traces (P2 |[X]| Q2) M2 .|. n"
apply (simp add: subdomT_iff)
apply (intro allI impI)
apply (simp add: in_rest_domT)
apply (simp add: in_traces)
apply (elim conjE exE)
apply (rule_tac x="s" in exI)
apply (rule_tac x="ta" in exI)
apply (simp)
apply (erule par_tr_lengthtE)
by (auto)
(*** rest_domT (equal) ***)
lemma Parallel_rest_domT:
"[| traces P1 M1 .|. n = traces P2 M2 .|. n ;
traces Q1 M1 .|. n = traces Q2 M2 .|. n |]
==> traces (P1 |[X]| Q1) M1 .|. n = traces (P2 |[X]| Q2) M2 .|. n"
apply (rule order_antisym)
by (simp_all add: Parallel_rest_domT_sub)
(*** distT lemma ***)
lemma Parallel_distT:
"PQs = {(traces P1 M1, traces P2 M2), (traces Q1 M1, traces Q2 M2)}
==> (EX PQ. PQ:PQs &
distance(traces (P1 |[X]| Q1) M1, traces (P2 |[X]| Q2) M2)
<= distance((fst PQ), (snd PQ)))"
apply (rule rest_to_dist_pair)
by (auto intro: Parallel_rest_domT)
(*** map_alpha T lemma ***)
lemma map_alpha_traces_Parallel_lm:
"[| distance (traces P1 M1, traces P2 M2) <= alpha * distance (x1, x2) ;
distance (traces Q1 M1, traces Q2 M2) <= alpha * distance (x1, x2) |]
==> distance (traces (P1 |[X]| Q1) M1, traces (P2 |[X]| Q2) M2)
<= alpha * distance (x1, x2)"
apply (insert Parallel_distT
[of "{(traces P1 M1, traces P2 M2), (traces Q1 M1, traces Q2 M2)}"
P1 M1 P2 M2 Q1 Q2 X])
by (auto)
(*** map_alpha ***)
lemma map_alpha_traces_Parallel:
"[| map_alpha (traces P) alpha ; map_alpha (traces Q) alpha |]
==> map_alpha (traces (P |[X]| Q)) alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
by (simp add: map_alpha_traces_Parallel_lm)
(*** non_expanding ***)
lemma non_expanding_traces_Parallel:
"[| non_expanding (traces P) ; non_expanding (traces Q) |]
==> non_expanding (traces (P |[X]| Q))"
by (simp add: non_expanding_def map_alpha_traces_Parallel)
(*** contraction_alpha ***)
lemma contraction_alpha_traces_Parallel:
"[| contraction_alpha (traces P) alpha ;
contraction_alpha (traces Q) alpha |]
==> contraction_alpha (traces (P |[X]| Q)) alpha"
by (simp add: contraction_alpha_def map_alpha_traces_Parallel)
(*--------------------------------*
| Hiding |
*--------------------------------*)
(* cms rules for Hiding is not necessary
because processes are guarded. *)
(*--------------------------------*
| Renaming |
*--------------------------------*)
(*** rest_domT (subset) ***)
lemma Renaming_rest_domT_sub:
"traces P M1 .|. n <= traces Q M2 .|. n
==> traces (P [[r]]) M1 .|. n <= traces (Q [[r]]) M2 .|. n"
apply (simp add: subdomT_iff)
apply (intro allI impI)
apply (simp add: in_rest_domT)
apply (simp add: in_traces)
apply (elim conjE exE)
apply (rule_tac x="s" in exI)
apply (drule_tac x="s" in spec)
by (simp add: ren_tr_lengtht)
(*** rest_domT (equal) ***)
lemma Renaming_rest_domT:
"traces P M1 .|. n = traces Q M2 .|. n
==> traces (P [[r]]) M1 .|. n = traces (Q [[r]]) M2 .|. n"
apply (rule order_antisym)
by (simp_all add: Renaming_rest_domT_sub)
(*** distT lemma ***)
lemma Renaming_distT:
"distance(traces (P [[r]]) M1, traces (Q [[r]]) M2) <=
distance(traces P M1, traces Q M2)"
apply (rule rest_distance_subset)
by (auto intro: Renaming_rest_domT)
(*** map_alphaT lemma ***)
lemma map_alpha_traces_Renaming_lm:
"distance(traces P M1, traces Q M2) <= alpha * distance (x1, x2)
==> distance(traces (P [[r]]) M1, traces (Q [[r]]) M2)
<= alpha * distance(x1, x2)"
apply (insert Renaming_distT[of P r M1 Q M2])
by (simp)
(*** map_alpha ***)
lemma map_alpha_traces_Renaming:
"map_alpha (traces P) alpha
==> map_alpha (traces (P [[r]])) alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
by (simp add: map_alpha_traces_Renaming_lm)
(*** non_expanding ***)
lemma non_expanding_traces_Renaming:
"non_expanding (traces P)
==> non_expanding (traces (P [[r]]))"
by (simp add: non_expanding_def map_alpha_traces_Renaming)
(*** contraction_alpha ***)
lemma contraction_alpha_traces_Renaming:
"contraction_alpha (traces P) alpha
==> contraction_alpha (traces (P [[r]])) alpha"
by (simp add: contraction_alpha_def map_alpha_traces_Renaming)
(*--------------------------------*
| Seq_compo |
*--------------------------------*)
(*** rest_domT (subset) ***)
lemma Seq_compo_rest_domT_sub:
"[| traces P1 M1 .|. n <= traces P2 M2 .|. n ;
traces Q1 M1 .|. n <= traces Q2 M2 .|. n |]
==> traces (P1 ;; Q1) M1 .|. n <= traces (P2 ;; Q2) M2 .|. n"
apply (simp add: subdomT_iff)
apply (intro allI impI)
apply (simp add: in_rest_domT)
apply (simp add: in_traces)
apply (elim conjE exE disjE)
(* case 1 *)
apply (rule disjI1)
apply (insert trace_last_noTick_or_Tick)
apply (rotate_tac -1)
apply (drule_tac x="s" in spec)
apply (erule disjE)
apply (rule_tac x="s" in exI, simp)
apply (elim conjE exE)
apply (rule_tac x="sa" in exI, simp)
apply (drule_tac x="sa" in spec, simp)
apply (drule mp)
apply (rule memT_prefix_closed, simp_all, simp)
(* case 2 *)
apply (case_tac "~ noTick s", simp)
apply (insert trace_last_nil_or_unnil)
apply (rotate_tac -1)
apply (drule_tac x="ta" in spec)
apply (erule disjE)
apply (rule disjI1) (* ta = []t *)
apply (rule_tac x="s" in exI, simp)
apply (drule_tac x="s" in spec, simp)
apply (drule mp)
apply (rule memT_prefix_closed, simp_all, simp)
apply (rule disjI2) (* ta ~= []t *)
apply (elim conjE exE, simp)
apply (drule_tac x="s ^^ <Tick>" in spec)
apply (drule_tac x=" sa ^^ <a>" in spec)
apply (simp)
apply (rule_tac x="s" in exI)
apply (rule_tac x="sa ^^ <a>" in exI)
apply (simp)
done
(*** rest_domT (equal) ***)
lemma Seq_compo_rest_domT:
"[| traces P1 M1 .|. n = traces P2 M2 .|. n ;
traces Q1 M1 .|. n = traces Q2 M2 .|. n |]
==> traces (P1 ;; Q1) M1 .|. n = traces (P2 ;; Q2) M2 .|. n"
apply (rule order_antisym)
by (simp_all add: Seq_compo_rest_domT_sub)
(*** distT lemma ***)
lemma Seq_compo_distT:
"PQs = {(traces P1 M1, traces P2 M2), (traces Q1 M1, traces Q2 M2)}
==> (EX PQ. PQ:PQs &
distance(traces (P1 ;; Q1) M1, traces (P2 ;; Q2) M2)
<= distance((fst PQ), (snd PQ)))"
apply (rule rest_to_dist_pair)
by (auto intro: Seq_compo_rest_domT)
(*** map_alpha T lemma ***)
lemma map_alpha_traces_Seq_compo_lm:
"[| distance (traces P1 M1, traces P2 M2) <= alpha * distance (x1, x2) ;
distance (traces Q1 M1, traces Q2 M2) <= alpha * distance (x1, x2) |]
==> distance (traces (P1 ;; Q1) M1, traces (P2 ;; Q2) M2)
<= alpha * distance (x1, x2)"
apply (insert Seq_compo_distT)
apply (insert Seq_compo_distT
[of "{(traces P1 M1, traces P2 M2), (traces Q1 M1, traces Q2 M2)}"
P1 M1 P2 M2 Q1 Q2])
by (auto)
(*** map_alpha ***)
lemma map_alpha_traces_Seq_compo:
"[| map_alpha (traces P) alpha ; map_alpha (traces Q) alpha |]
==> map_alpha (traces (P ;; Q)) alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
by (simp add: map_alpha_traces_Seq_compo_lm)
(*** non_expanding ***)
lemma non_expanding_traces_Seq_compo:
"[| non_expanding (traces P) ; non_expanding (traces Q) |]
==> non_expanding (traces (P ;; Q))"
by (simp add: non_expanding_def map_alpha_traces_Seq_compo)
(*** contraction_alpha ***)
lemma contraction_alpha_traces_Seq_compo:
"[| contraction_alpha (traces P) alpha ;
contraction_alpha (traces Q) alpha|]
==> contraction_alpha (traces (P ;; Q)) alpha"
by (simp add: contraction_alpha_def map_alpha_traces_Seq_compo)
(*--------------------------------*
| Seq_compo (gSKIP) |
*--------------------------------*)
(*** rest_domT (subset) ***)
lemma gSKIP_Seq_compo_rest_domT_sub:
"[| traces P1 M1 .|. (Suc n) <= traces P2 M2 .|. (Suc n) ;
traces Q1 M1 .|. n <= traces Q2 M2 .|. n ;
<Tick> ~:t traces P1 M1 ;
<Tick> ~:t traces P2 M2 |]
==> traces (P1 ;; Q1) M1 .|. (Suc n) <= traces (P2 ;; Q2) M2 .|. (Suc n)"
apply (simp add: subdomT_iff)
apply (intro allI impI)
apply (simp add: in_rest_domT)
apply (simp add: in_traces)
apply (elim conjE exE disjE)
(* case 1 *)
apply (rule disjI1)
apply (insert trace_last_noTick_or_Tick)
apply (rotate_tac -1)
apply (drule_tac x="s" in spec)
apply (erule disjE)
apply (rule_tac x="s" in exI, simp)
apply (elim conjE exE)
apply (rule_tac x="sa" in exI, simp)
apply (drule_tac x="sa" in spec, simp)
apply (drule mp)
apply (rule memT_prefix_closed, simp_all, simp)
(* case 2 *)
apply (case_tac "~ noTick s", simp)
apply (insert trace_last_nil_or_unnil)
apply (rotate_tac -1)
apply (drule_tac x="ta" in spec)
apply (erule disjE)
apply (rule disjI1) (* ta = []t *)
apply (rule_tac x="s" in exI, simp)
apply (drule_tac x="s" in spec, simp)
apply (drule mp)
apply (rule memT_prefix_closed, simp_all, simp)
apply (rule disjI2) (* ta ~= []t *)
apply (elim conjE exE, simp)
apply (drule_tac x="s ^^ <Tick>" in spec)
apply (drule_tac x=" sa ^^ <a>" in spec)
apply (simp)
apply (rule_tac x="s" in exI)
apply (rule_tac x="sa ^^ <a>" in exI)
apply (simp)
apply (insert trace_last_nil_or_unnil)
apply (rotate_tac -1)
apply (drule_tac x="s" in spec)
apply (erule disjE)
apply (auto)
done
(*** rest_domT (equal) ***)
lemma gSKIP_Seq_compo_rest_domT:
"[| traces P1 M1 .|. (Suc n) = traces P2 M2 .|. (Suc n) ;
traces Q1 M1 .|. n = traces Q2 M2 .|. n ;
<Tick> ~:t traces P1 M1 ;
<Tick> ~:t traces P2 M2 |]
==> traces (P1 ;; Q1) M1 .|. (Suc n) = traces (P2 ;; Q2) M2 .|. (Suc n)"
apply (rule order_antisym)
by (simp_all add: gSKIP_Seq_compo_rest_domT_sub)
(*** map_alpha T lemma ***)
lemma gSKIP_map_alpha_traces_Seq_compo_lm:
"[| distance (traces P1 M1, traces P2 M2) * 2 <= (1/2)^n ;
distance (traces Q1 M1, traces Q2 M2) <= (1/2)^n ;
<Tick> ~:t traces P1 M1 ;
<Tick> ~:t traces P2 M2 |]
==> distance (traces (P1 ;; Q1) M1, traces (P2 ;; Q2) M2) * 2
<= (1/2)^n"
apply (insert gSKIP_Seq_compo_rest_domT)
apply (insert gSKIP_Seq_compo_rest_domT[of P1 M1 n P2 M2 Q1 Q2])
apply (simp add: distance_rs_le_1)
done
(*** map_alpha ***)
lemma gSKIP_contraction_half_traces_Seq_compo:
"[| contraction_alpha (traces P) (1/2) ; non_expanding (traces Q) ;
gSKIP P |]
==> contraction_alpha (traces (P ;; Q)) (1/2)"
apply (simp add: contraction_alpha_def non_expanding_def map_alpha_def)
apply (intro allI)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
apply (case_tac "x = y", simp)
apply (simp add: distance_iff)
apply (insert gSKIP_to_Tick_notin_traces)
apply (frule_tac x="P" in spec)
apply (drule_tac x="P" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (simp add: gSKIP_map_alpha_traces_Seq_compo_lm)
done
(*--------------------------------*
| Depth_rest |
*--------------------------------*)
(*** rest_domT (equal) ***)
lemma Depth_rest_rest_domT:
"traces P M1 .|. n = traces Q M2 .|. n
==> traces (P |. m) M1 .|. n = traces (Q |. m) M2 .|. n"
apply (simp add: traces.simps)
apply (simp add: min_rs)
apply (rule rest_equal_preserve)
apply (simp)
apply (simp add: min_def)
done
(*** distT lemma ***)
lemma Depth_rest_distT:
"distance(traces (P |. m) M1, traces (Q |. m) M2) <=
distance(traces P M1, traces Q M2)"
apply (rule rest_distance_subset)
by (auto intro: Depth_rest_rest_domT)
(*** map_alphaT lemma ***)
lemma map_alpha_traces_Depth_rest_lm:
"distance(traces P M1, traces Q M2) <= alpha * distance (x1, x2)
==> distance(traces (P |. m) M1, traces (Q |. m) M2)
<= alpha * distance(x1, x2)"
apply (insert Depth_rest_distT[of P m M1 Q M2])
by (simp)
(*** map_alpha ***)
lemma map_alpha_traces_Depth_rest:
"map_alpha (traces P) alpha
==> map_alpha (traces (P |. m)) alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
by (simp add: map_alpha_traces_Depth_rest_lm)
(*** non_expanding ***)
lemma non_expanding_traces_Depth_rest:
"non_expanding (traces P)
==> non_expanding (traces (P |. m))"
by (simp add: non_expanding_def map_alpha_traces_Depth_rest)
(*** contraction_alpha ***)
lemma contraction_alpha_traces_Depth_rest:
"contraction_alpha (traces P) alpha
==> contraction_alpha (traces (P |. m)) alpha"
by (simp add: contraction_alpha_def map_alpha_traces_Depth_rest)
(*--------------------------------*
| variable |
*--------------------------------*)
(*** non_expanding ***)
lemma non_expanding_traces_variable:
"non_expanding (traces ($p))"
apply (simp add: traces_def)
apply (simp add: non_expanding_prod_variable)
done
(*--------------------------------*
| Procfun |
*--------------------------------*)
(*****************************************************************
| non_expanding |
*****************************************************************)
lemma non_expanding_traces_lm:
"noHide P --> non_expanding (traces P)"
apply (induct_tac P)
apply (simp add: non_expanding_traces_STOP)
apply (simp add: non_expanding_traces_SKIP)
apply (simp add: non_expanding_traces_DIV)
apply (simp add: non_expanding_traces_Act_prefix)
apply (simp add: non_expanding_traces_Ext_pre_choice)
apply (simp add: non_expanding_traces_Ext_choice)
apply (simp add: non_expanding_traces_Int_choice)
apply (simp add: non_expanding_traces_Rep_int_choice)
apply (simp add: non_expanding_traces_IF)
apply (simp add: non_expanding_traces_Parallel)
(* hiding --> const *)
apply (intro impI)
apply (subgoal_tac "EX T. (traces (proc -- set) = (%M. T))")
apply (erule exE)
apply (simp)
apply (simp add: non_expanding_Constant)
apply (rule traces_noPN_Constant)
apply (simp)
apply (simp add: non_expanding_traces_Renaming)
apply (simp add: non_expanding_traces_Seq_compo)
(* Depth_res *)
apply (simp add: non_expanding_traces_Depth_rest)
apply (simp add: traces_def)
apply (simp add: zero_rs_domT)
apply (simp add: non_expanding_Constant)
apply (simp add: non_expanding_traces_variable)
done
lemma non_expanding_traces:
"noHide P ==> non_expanding (traces P)"
apply (simp add: non_expanding_traces_lm)
done
(*=============================================================*
| [[P]]Tf |
*=============================================================*)
lemma non_expanding_semTf:
"noHide P ==> non_expanding [[P]]Tf"
apply (simp add: semTf_def)
apply (simp add: non_expanding_traces)
done
(*=============================================================*
| [[P]]Tfun |
*=============================================================*)
lemma non_expanding_semTfun:
"noHidefun Pf ==> non_expanding [[Pf]]Tfun"
apply (simp add: noHidefun_def)
apply (simp add: prod_non_expand)
apply (simp add: semTfun_def)
apply (simp add: proj_fun_def)
apply (simp add: comp_def)
apply (simp add: non_expanding_semTf)
done
(*****************************************************************
| contraction |
*****************************************************************)
lemma contraction_alpha_traces_lm:
"guarded P --> contraction_alpha (traces P) (1/2)"
apply (induct_tac P)
apply (simp add: contraction_alpha_traces_STOP)
apply (simp add: contraction_alpha_traces_SKIP)
apply (simp add: contraction_alpha_traces_DIV)
apply (simp add: contraction_half_traces_Act_prefix
non_expanding_traces)
apply (simp add: contraction_half_traces_Ext_pre_choice
non_expanding_traces)
apply (simp add: contraction_alpha_traces_Ext_choice)
apply (simp add: contraction_alpha_traces_Int_choice)
apply (simp add: contraction_alpha_traces_Rep_int_choice)
apply (simp add: contraction_alpha_traces_IF)
apply (simp add: contraction_alpha_traces_Parallel)
(* hiding --> const *)
apply (intro impI)
apply (subgoal_tac "EX T. (traces (proc -- set) = (%M. T))")
apply (erule exE)
apply (simp add: contraction_alpha_Constant)
apply (rule traces_noPN_Constant)
apply (simp)
apply (simp add: contraction_alpha_traces_Renaming)
(* Seq_compo *)
apply (simp)
apply (intro conjI impI)
apply (simp add: gSKIP_contraction_half_traces_Seq_compo
non_expanding_traces)
apply (simp add: contraction_alpha_traces_Seq_compo)
(* Depth_res *)
apply (simp add: contraction_alpha_traces_Depth_rest)
apply (simp add: traces_def)
apply (simp add: zero_rs_domT)
apply (simp add: contraction_alpha_Constant)
apply (simp)
done
lemma contraction_alpha_traces:
"guarded P ==> contraction_alpha (traces P) (1/2)"
by (simp add: contraction_alpha_traces_lm)
(*=============================================================*
| [[P]]Tf |
*=============================================================*)
lemma contraction_alpha_semTf:
"guarded P ==> contraction_alpha [[P]]Tf (1/2)"
apply (simp add: semTf_def)
apply (simp add: contraction_alpha_traces)
done
(*=============================================================*
| [[P]]Tfun |
*=============================================================*)
lemma contraction_alpha_semTfun:
"guardedfun Pf ==> contraction_alpha [[Pf]]Tfun (1/2)"
apply (simp add: guardedfun_def)
apply (simp add: prod_contra_alpha)
apply (simp add: semTfun_def)
apply (simp add: proj_fun_def)
apply (simp add: comp_def)
apply (simp add: contraction_alpha_semTf)
done
(*=============================================================*
| contraction |
*=============================================================*)
lemma contraction_semTfun:
"guardedfun Pf ==> contraction [[Pf]]Tfun"
apply (simp add: contraction_def)
apply (rule_tac x="1/2" in exI)
apply (simp add:contraction_alpha_semTfun)
done
end
lemma gSKIP_to_Tick_notin_traces:
∀P M. gSKIP P --> <Tick> ~:t traces P M
lemma map_alpha_Constant:
0 ≤ alpha ==> map_alpha (%M. C) alpha
lemma non_expanding_Constant:
non_expanding (%M. C)
lemma contraction_alpha_Constant:
[| 0 ≤ alpha; alpha < 1 |] ==> contraction_alpha (%M. C) alpha
lemma map_alpha_traces_STOP:
0 ≤ alpha ==> map_alpha (traces STOP) alpha
lemma non_expanding_traces_STOP:
non_expanding (traces STOP)
lemma contraction_alpha_traces_STOP:
[| 0 ≤ alpha; alpha < 1 |] ==> contraction_alpha (traces STOP) alpha
lemma map_alpha_traces_SKIP:
0 ≤ alpha ==> map_alpha (traces SKIP) alpha
lemma non_expanding_traces_SKIP:
non_expanding (traces SKIP)
lemma contraction_alpha_traces_SKIP:
[| 0 ≤ alpha; alpha < 1 |] ==> contraction_alpha (traces SKIP) alpha
lemma map_alpha_traces_DIV:
0 ≤ alpha ==> map_alpha (traces DIV) alpha
lemma non_expanding_traces_DIV:
non_expanding (traces DIV)
lemma contraction_alpha_traces_DIV:
[| 0 ≤ alpha; alpha < 1 |] ==> contraction_alpha (traces DIV) alpha
lemma contraction_half_traces_Act_prefix_lm:
distance (traces (a -> P) M1.0, traces (a -> Q) M2.0) * 2 = distance (traces P M1.0, traces Q M2.0)
lemma contraction_half_traces_Act_prefix:
non_expanding (traces P) ==> contraction_alpha (traces (a -> P)) (1 / 2)
lemma contraction_traces_Act_prefix:
non_expanding (traces P) ==> contraction (traces (a -> P))
lemma non_expanding_traces_Act_prefix:
non_expanding (traces P) ==> non_expanding (traces (a -> P))
lemma Ext_pre_choice_Act_prefix_rest_domT_sub:
∀a∈X. traces (a -> Pf a) M1.0 .|. n ≤ traces (a -> Qf a) M2.0 .|. n ==> traces (? :X -> Pf) M1.0 .|. n ≤ traces (? :X -> Qf) M2.0 .|. n
lemma Ext_pre_choice_Act_prefix_rest_domT:
∀a∈X. traces (a -> Pf a) M1.0 .|. n = traces (a -> Qf a) M2.0 .|. n ==> traces (? :X -> Pf) M1.0 .|. n = traces (? :X -> Qf) M2.0 .|. n
lemma Ext_pre_choice_Act_prefix_distT_nonempty:
[| X ≠ {}; PQs = {(traces (a -> Pf a) M1.0, traces (a -> Qf a) M2.0) |a. a ∈ X} |] ==> ∃PQ. PQ ∈ PQs ∧ distance (traces (? :X -> Pf) M1.0, traces (? :X -> Qf) M2.0) ≤ distance (fst PQ, snd PQ)
lemma contraction_half_traces_Ext_pre_choice_lm:
[| X ≠ {}; ∀a. distance (traces (Pf a) M1.0, traces (Qf a) M2.0) ≤ distance (x1.0, x2.0) |] ==> distance (traces (? :X -> Pf) M1.0, traces (? :X -> Qf) M2.0) * 2 ≤ distance (x1.0, x2.0)
lemma contraction_half_traces_Ext_pre_choice:
∀a. non_expanding (traces (Pf a)) ==> contraction_alpha (traces (? :X -> Pf)) (1 / 2)
lemma contraction_traces_Ext_pre_choice:
∀a. non_expanding (traces (Pf a)) ==> contraction (traces (? :X -> Pf))
lemma non_expanding_traces_Ext_pre_choice:
∀a. non_expanding (traces (Pf a)) ==> non_expanding (traces (? :X -> Pf))
lemma Ext_choice_rest_domT_sub:
[| traces P1.0 M1.0 .|. n ≤ traces P2.0 M2.0 .|. n; traces Q1.0 M1.0 .|. n ≤ traces Q2.0 M2.0 .|. n |] ==> traces (P1.0 [+] Q1.0) M1.0 .|. n ≤ traces (P2.0 [+] Q2.0) M2.0 .|. n
lemma Ext_choice_rest_domT:
[| traces P1.0 M1.0 .|. n = traces P2.0 M2.0 .|. n; traces Q1.0 M1.0 .|. n = traces Q2.0 M2.0 .|. n |] ==> traces (P1.0 [+] Q1.0) M1.0 .|. n = traces (P2.0 [+] Q2.0) M2.0 .|. n
lemma Ext_choice_distT:
PQs = {(traces P1.0 M1.0, traces P2.0 M2.0), (traces Q1.0 M1.0, traces Q2.0 M2.0)} ==> ∃PQ. PQ ∈ PQs ∧ distance (traces (P1.0 [+] Q1.0) M1.0, traces (P2.0 [+] Q2.0) M2.0) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_traces_Ext_choice_lm:
[| distance (traces P1.0 M1.0, traces P2.0 M2.0) ≤ alpha * distance (x1.0, x2.0); distance (traces Q1.0 M1.0, traces Q2.0 M2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (traces (P1.0 [+] Q1.0) M1.0, traces (P2.0 [+] Q2.0) M2.0) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_traces_Ext_choice:
[| map_alpha (traces P) alpha; map_alpha (traces Q) alpha |] ==> map_alpha (traces (P [+] Q)) alpha
lemma non_expanding_traces_Ext_choice:
[| non_expanding (traces P); non_expanding (traces Q) |] ==> non_expanding (traces (P [+] Q))
lemma contraction_alpha_traces_Ext_choice:
[| contraction_alpha (traces P) alpha; contraction_alpha (traces Q) alpha |] ==> contraction_alpha (traces (P [+] Q)) alpha
lemma map_alpha_traces_Int_choice:
[| map_alpha (traces P) alpha; map_alpha (traces Q) alpha |] ==> map_alpha (traces (P |~| Q)) alpha
lemma non_expanding_traces_Int_choice:
[| non_expanding (traces P); non_expanding (traces Q) |] ==> non_expanding (traces (P |~| Q))
lemma contraction_alpha_traces_Int_choice:
[| contraction_alpha (traces P) alpha; contraction_alpha (traces Q) alpha |] ==> contraction_alpha (traces (P |~| Q)) alpha
lemma Rep_int_choice_rest_domT_sub:
∀c∈sumset C. traces (Pf c) M1.0 .|. n ≤ traces (Qf c) M2.0 .|. n ==> traces (!! :C .. Pf) M1.0 .|. n ≤ traces (!! :C .. Qf) M2.0 .|. n
lemma Rep_int_choice_rest_domT:
∀c∈sumset C. traces (Pf c) M1.0 .|. n = traces (Qf c) M2.0 .|. n ==> traces (!! :C .. Pf) M1.0 .|. n = traces (!! :C .. Qf) M2.0 .|. n
lemma Rep_int_choice_distT_nonempty:
[| sumset C ≠ {}; PQs = {(traces (Pf c) M1.0, traces (Qf c) M2.0) |c. c ∈ sumset C} |] ==> ∃PQ. PQ ∈ PQs ∧ distance (traces (!! :C .. Pf) M1.0, traces (!! :C .. Qf) M2.0) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_traces_Rep_int_choice_lm:
[| sumset C ≠ {}; ∀c. distance (traces (Pf c) M1.0, traces (Qf c) M2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (traces (!! :C .. Pf) M1.0, traces (!! :C .. Qf) M2.0) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_traces_Rep_int_choice:
∀c. map_alpha (traces (Pf c)) alpha ==> map_alpha (traces (!! :C .. Pf)) alpha
lemma non_expanding_traces_Rep_int_choice:
∀c. non_expanding (traces (Pf c)) ==> non_expanding (traces (!! :C .. Pf))
lemma contraction_alpha_traces_Rep_int_choice:
∀c. contraction_alpha (traces (Pf c)) alpha ==> contraction_alpha (traces (!! :C .. Pf)) alpha
lemma IF_rest_domT_sub:
[| traces P1.0 M1.0 .|. n ≤ traces P2.0 M2.0 .|. n; traces Q1.0 M1.0 .|. n ≤ traces Q2.0 M2.0 .|. n |] ==> traces (IF b THEN P1.0 ELSE Q1.0) M1.0 .|. n ≤ traces (IF b THEN P2.0 ELSE Q2.0) M2.0 .|. n
lemma IF_rest_domT:
[| traces P1.0 M1.0 .|. n = traces P2.0 M2.0 .|. n; traces Q1.0 M1.0 .|. n = traces Q2.0 M2.0 .|. n |] ==> traces (IF b THEN P1.0 ELSE Q1.0) M1.0 .|. n = traces (IF b THEN P2.0 ELSE Q2.0) M2.0 .|. n
lemma IF_distT:
PQs = {(traces P1.0 M1.0, traces P2.0 M2.0), (traces Q1.0 M1.0, traces Q2.0 M2.0)} ==> ∃PQ. PQ ∈ PQs ∧ distance (traces (IF b THEN P1.0 ELSE Q1.0) M1.0, traces (IF b THEN P2.0 ELSE Q2.0) M2.0) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_traces_IF_lm:
[| distance (traces P1.0 M1.0, traces P2.0 M2.0) ≤ alpha * distance (x1.0, x2.0); distance (traces Q1.0 M1.0, traces Q2.0 M2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (traces (IF b THEN P1.0 ELSE Q1.0) M1.0, traces (IF b THEN P2.0 ELSE Q2.0) M2.0) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_traces_IF:
[| map_alpha (traces P) alpha; map_alpha (traces Q) alpha |] ==> map_alpha (traces (IF b THEN P ELSE Q)) alpha
lemma non_expanding_traces_IF:
[| non_expanding (traces P); non_expanding (traces Q) |] ==> non_expanding (traces (IF b THEN P ELSE Q))
lemma contraction_alpha_traces_IF:
[| contraction_alpha (traces P) alpha; contraction_alpha (traces Q) alpha |] ==> contraction_alpha (traces (IF b THEN P ELSE Q)) alpha
lemma Parallel_rest_domT_sub:
[| traces P1.0 M1.0 .|. n ≤ traces P2.0 M2.0 .|. n; traces Q1.0 M1.0 .|. n ≤ traces Q2.0 M2.0 .|. n |] ==> traces (P1.0 |[X]| Q1.0) M1.0 .|. n ≤ traces (P2.0 |[X]| Q2.0) M2.0 .|. n
lemma Parallel_rest_domT:
[| traces P1.0 M1.0 .|. n = traces P2.0 M2.0 .|. n; traces Q1.0 M1.0 .|. n = traces Q2.0 M2.0 .|. n |] ==> traces (P1.0 |[X]| Q1.0) M1.0 .|. n = traces (P2.0 |[X]| Q2.0) M2.0 .|. n
lemma Parallel_distT:
PQs = {(traces P1.0 M1.0, traces P2.0 M2.0), (traces Q1.0 M1.0, traces Q2.0 M2.0)} ==> ∃PQ. PQ ∈ PQs ∧ distance (traces (P1.0 |[X]| Q1.0) M1.0, traces (P2.0 |[X]| Q2.0) M2.0) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_traces_Parallel_lm:
[| distance (traces P1.0 M1.0, traces P2.0 M2.0) ≤ alpha * distance (x1.0, x2.0); distance (traces Q1.0 M1.0, traces Q2.0 M2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (traces (P1.0 |[X]| Q1.0) M1.0, traces (P2.0 |[X]| Q2.0) M2.0) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_traces_Parallel:
[| map_alpha (traces P) alpha; map_alpha (traces Q) alpha |] ==> map_alpha (traces (P |[X]| Q)) alpha
lemma non_expanding_traces_Parallel:
[| non_expanding (traces P); non_expanding (traces Q) |] ==> non_expanding (traces (P |[X]| Q))
lemma contraction_alpha_traces_Parallel:
[| contraction_alpha (traces P) alpha; contraction_alpha (traces Q) alpha |] ==> contraction_alpha (traces (P |[X]| Q)) alpha
lemma Renaming_rest_domT_sub:
traces P M1.0 .|. n ≤ traces Q M2.0 .|. n ==> traces (P [[r]]) M1.0 .|. n ≤ traces (Q [[r]]) M2.0 .|. n
lemma Renaming_rest_domT:
traces P M1.0 .|. n = traces Q M2.0 .|. n ==> traces (P [[r]]) M1.0 .|. n = traces (Q [[r]]) M2.0 .|. n
lemma Renaming_distT:
distance (traces (P [[r]]) M1.0, traces (Q [[r]]) M2.0) ≤ distance (traces P M1.0, traces Q M2.0)
lemma map_alpha_traces_Renaming_lm:
distance (traces P M1.0, traces Q M2.0) ≤ alpha * distance (x1.0, x2.0) ==> distance (traces (P [[r]]) M1.0, traces (Q [[r]]) M2.0) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_traces_Renaming:
map_alpha (traces P) alpha ==> map_alpha (traces (P [[r]])) alpha
lemma non_expanding_traces_Renaming:
non_expanding (traces P) ==> non_expanding (traces (P [[r]]))
lemma contraction_alpha_traces_Renaming:
contraction_alpha (traces P) alpha ==> contraction_alpha (traces (P [[r]])) alpha
lemma Seq_compo_rest_domT_sub:
[| traces P1.0 M1.0 .|. n ≤ traces P2.0 M2.0 .|. n; traces Q1.0 M1.0 .|. n ≤ traces Q2.0 M2.0 .|. n |] ==> traces (P1.0 ;; Q1.0) M1.0 .|. n ≤ traces (P2.0 ;; Q2.0) M2.0 .|. n
lemma Seq_compo_rest_domT:
[| traces P1.0 M1.0 .|. n = traces P2.0 M2.0 .|. n; traces Q1.0 M1.0 .|. n = traces Q2.0 M2.0 .|. n |] ==> traces (P1.0 ;; Q1.0) M1.0 .|. n = traces (P2.0 ;; Q2.0) M2.0 .|. n
lemma Seq_compo_distT:
PQs = {(traces P1.0 M1.0, traces P2.0 M2.0), (traces Q1.0 M1.0, traces Q2.0 M2.0)} ==> ∃PQ. PQ ∈ PQs ∧ distance (traces (P1.0 ;; Q1.0) M1.0, traces (P2.0 ;; Q2.0) M2.0) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_traces_Seq_compo_lm:
[| distance (traces P1.0 M1.0, traces P2.0 M2.0) ≤ alpha * distance (x1.0, x2.0); distance (traces Q1.0 M1.0, traces Q2.0 M2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (traces (P1.0 ;; Q1.0) M1.0, traces (P2.0 ;; Q2.0) M2.0) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_traces_Seq_compo:
[| map_alpha (traces P) alpha; map_alpha (traces Q) alpha |] ==> map_alpha (traces (P ;; Q)) alpha
lemma non_expanding_traces_Seq_compo:
[| non_expanding (traces P); non_expanding (traces Q) |] ==> non_expanding (traces (P ;; Q))
lemma contraction_alpha_traces_Seq_compo:
[| contraction_alpha (traces P) alpha; contraction_alpha (traces Q) alpha |] ==> contraction_alpha (traces (P ;; Q)) alpha
lemma gSKIP_Seq_compo_rest_domT_sub:
[| traces P1.0 M1.0 .|. Suc n ≤ traces P2.0 M2.0 .|. Suc n; traces Q1.0 M1.0 .|. n ≤ traces Q2.0 M2.0 .|. n; <Tick> ~:t traces P1.0 M1.0; <Tick> ~:t traces P2.0 M2.0 |] ==> traces (P1.0 ;; Q1.0) M1.0 .|. Suc n ≤ traces (P2.0 ;; Q2.0) M2.0 .|. Suc n
lemma gSKIP_Seq_compo_rest_domT:
[| traces P1.0 M1.0 .|. Suc n = traces P2.0 M2.0 .|. Suc n; traces Q1.0 M1.0 .|. n = traces Q2.0 M2.0 .|. n; <Tick> ~:t traces P1.0 M1.0; <Tick> ~:t traces P2.0 M2.0 |] ==> traces (P1.0 ;; Q1.0) M1.0 .|. Suc n = traces (P2.0 ;; Q2.0) M2.0 .|. Suc n
lemma gSKIP_map_alpha_traces_Seq_compo_lm:
[| distance (traces P1.0 M1.0, traces P2.0 M2.0) * 2 ≤ (1 / 2) ^ n; distance (traces Q1.0 M1.0, traces Q2.0 M2.0) ≤ (1 / 2) ^ n; <Tick> ~:t traces P1.0 M1.0; <Tick> ~:t traces P2.0 M2.0 |] ==> distance (traces (P1.0 ;; Q1.0) M1.0, traces (P2.0 ;; Q2.0) M2.0) * 2 ≤ (1 / 2) ^ n
lemma gSKIP_contraction_half_traces_Seq_compo:
[| contraction_alpha (traces P) (1 / 2); non_expanding (traces Q); gSKIP P |] ==> contraction_alpha (traces (P ;; Q)) (1 / 2)
lemma Depth_rest_rest_domT:
traces P M1.0 .|. n = traces Q M2.0 .|. n ==> traces (P |. m) M1.0 .|. n = traces (Q |. m) M2.0 .|. n
lemma Depth_rest_distT:
distance (traces (P |. m) M1.0, traces (Q |. m) M2.0) ≤ distance (traces P M1.0, traces Q M2.0)
lemma map_alpha_traces_Depth_rest_lm:
distance (traces P M1.0, traces Q M2.0) ≤ alpha * distance (x1.0, x2.0) ==> distance (traces (P |. m) M1.0, traces (Q |. m) M2.0) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_traces_Depth_rest:
map_alpha (traces P) alpha ==> map_alpha (traces (P |. m)) alpha
lemma non_expanding_traces_Depth_rest:
non_expanding (traces P) ==> non_expanding (traces (P |. m))
lemma contraction_alpha_traces_Depth_rest:
contraction_alpha (traces P) alpha ==> contraction_alpha (traces (P |. m)) alpha
lemma non_expanding_traces_variable:
non_expanding (traces ($p))
lemma non_expanding_traces_lm:
noHide P --> non_expanding (traces P)
lemma non_expanding_traces:
noHide P ==> non_expanding (traces P)
lemma non_expanding_semTf:
noHide P ==> non_expanding [[P]]Tf
lemma non_expanding_semTfun:
noHidefun Pf ==> non_expanding [[Pf]]Tfun
lemma contraction_alpha_traces_lm:
guarded P --> contraction_alpha (traces P) (1 / 2)
lemma contraction_alpha_traces:
guarded P ==> contraction_alpha (traces P) (1 / 2)
lemma contraction_alpha_semTf:
guarded P ==> contraction_alpha [[P]]Tf (1 / 2)
lemma contraction_alpha_semTfun:
guardedfun Pf ==> contraction_alpha [[Pf]]Tfun (1 / 2)
lemma contraction_semTfun:
guardedfun Pf ==> contraction [[Pf]]Tfun