Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_mono (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| December 2004 |
| July 2005 (modified) |
| August 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| October 2005 (modified) |
| March 2007 (modified) |
| August 2007 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_F_mono
imports CSP_F_domain CSP_T_mono
begin
(*****************************************************************
1. mono check of failuresfun
2.
3.
4.
*****************************************************************)
(*--------------------------------*
| STOP,SKIP,DIV |
*--------------------------------*)
lemma mono_failures_STOP: "mono (failures (STOP))"
by (simp add: mono_def failures_def)
lemma mono_failures_SKIP: "mono (failures (SKIP))"
by (simp add: mono_def failures_def)
lemma mono_failures_DIV: "mono (failures (DIV))"
by (simp add: mono_def failures_def)
(*--------------------------------*
| Act_prefix |
*--------------------------------*)
lemma mono_failures_Act_prefix:
"mono (failures P) ==> mono (failures (a -> P))"
apply (simp add: mono_def)
apply (intro allI impI)
apply (drule_tac x="A" in spec)
apply (drule_tac x="B" in spec)
apply (simp)
apply (rule)
apply (simp add: in_failures)
apply (auto)
done
(*--------------------------------*
| Ext_pre_choice |
*--------------------------------*)
lemma mono_failures_Ext_pre_choice:
"ALL a. mono (failures (Pf a))
==> mono (failures (? a:X -> (Pf a)))"
apply (simp add: mono_def)
apply (intro allI impI)
apply (rule)
apply (simp add: in_failures)
apply (erule disjE, simp)
apply (rule disjI2)
apply (elim conjE exE)
apply (drule_tac x="a" in spec)
apply (drule_tac x="A" in spec)
apply (drule_tac x="B" in spec)
apply (auto)
done
(*--------------------------------*
| Ext_choice |
*--------------------------------*)
lemma mono_failures_Ext_choice:
"[| mono (traces P) ; mono (traces Q) ;
mono (failures P) ; mono (failures Q) |]
==> mono (failures (P [+] Q))"
apply (simp add: mono_def)
apply (intro allI impI)
apply (rule)
apply (simp add: in_failures)
apply (drule_tac x="A" in spec)
apply (drule_tac x="A" in spec)
apply (drule_tac x="B" in spec)
apply (drule_tac x="B" in spec)
apply (drule_tac x="(fstF o A)" in spec)
apply (drule_tac x="(fstF o A)" in spec)
apply (drule_tac x="(fstF o B)" in spec)
apply (drule_tac x="(fstF o B)" in spec)
apply (simp add: order_prod_def mono_fstF[simplified mono_def])
apply (elim conjE disjE)
apply (force)+
done
(*--------------------------------*
| Int_choice |
*--------------------------------*)
lemma mono_failures_Int_choice:
"[| mono (failures P) ; mono (failures Q) |]
==> mono (failures (P |~| Q))"
apply (simp add: mono_def)
apply (intro allI impI)
apply (rule)
apply (simp add: in_failures)
apply (elim disjE)
apply (force)
apply (force)
done
(*--------------------------------*
| Rep_int_choice |
*--------------------------------*)
lemma mono_failures_Rep_int_choice:
"ALL c. mono (failures (Pf c))
==> mono (failures (!! c:C .. (Pf c)))"
apply (simp add: mono_def)
apply (intro allI impI)
apply (rule)
apply (simp add: in_failures)
apply (elim conjE bexE)
apply (drule_tac x="c" in spec)
apply (drule_tac x="A" in spec)
apply (drule_tac x="B" in spec)
apply (auto)
done
(*--------------------------------*
| IF |
*--------------------------------*)
lemma mono_failures_IF:
"[| mono (failures P) ; mono (failures Q) |]
==> mono (failures (IF b THEN P ELSE Q))"
apply (simp add: mono_def)
apply (auto simp add: in_failures subsetF_iff)
done
(*--------------------------------*
| Parallel |
*--------------------------------*)
lemma mono_failures_Parallel:
"[| mono (failures P) ; mono (failures Q) |]
==> mono (failures (P |[X]| Q))"
apply (simp add: mono_def)
apply (intro allI impI)
apply (rule)
apply (simp add: in_failures)
apply (elim conjE exE)
apply (rule_tac x="Y" in exI)
apply (rule_tac x="Z" in exI)
apply (simp)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="t" in exI)
apply (auto simp add: subsetF_iff)
done
(*--------------------------------*
| Hiding |
*--------------------------------*)
lemma mono_failures_Hiding:
"mono (failures P)
==> mono (failures (P -- X))"
apply (simp add: mono_def)
apply (intro allI impI)
apply (rule)
apply (simp add: in_failures)
apply (elim conjE exE)
apply (rule_tac x="sa" in exI)
apply (auto simp add: subsetF_iff)
done
(*--------------------------------*
| Renaming |
*--------------------------------*)
lemma mono_failures_Renaming:
"mono (failures P)
==> mono (failures (P [[r]]))"
apply (simp add: mono_def)
apply (intro allI impI)
apply (rule)
apply (simp add: in_failures)
apply (elim conjE exE)
apply (rule_tac x="sa" in exI)
apply (auto simp add: subsetF_iff)
done
(*--------------------------------*
| Seq_compo |
*--------------------------------*)
lemma mono_failures_Seq_compo:
"[| mono (failures P) ; mono (failures Q) |]
==> mono (failures (P ;; Q))"
apply (simp add: mono_def)
apply (intro allI impI)
apply (rule)
apply (simp add: in_failures)
apply (erule disjE)
apply (simp add: subsetF_iff)
apply (elim conjE exE)
apply (rule disjI2)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="t" in exI)
apply (drule_tac x="A" in spec)
apply (drule_tac x="A" in spec)
apply (drule_tac x="B" in spec)
apply (drule_tac x="B" in spec)
apply (simp)
apply (subgoal_tac "traces P (fstF o A) <= traces P (fstF o B)")
apply (force)
apply (subgoal_tac "fstF o A <= fstF o B")
apply (simp add: mono_traces[simplified mono_def])
apply (simp add: order_prod_def)
apply (rule allI)
apply (drule_tac x="x" in spec)
apply (simp add: mono_fstF[simplified mono_def])
done
(*--------------------------------*
| Depth_rest |
*--------------------------------*)
lemma mono_failures_Depth_rest:
"mono (failures P)
==> mono (failures (P |. n))"
apply (simp add: mono_def)
apply (intro allI impI)
apply (rule)
apply (simp add: in_failures)
apply (elim conjE exE disjE)
apply (force)
apply (force)
done
(*--------------------------------*
| variable |
*--------------------------------*)
lemma mono_failures_variable:
"mono (failures ($p))"
apply (simp add: mono_def)
apply (intro allI impI)
apply (rule)
apply (simp add: in_failures)
apply (simp add: order_prod_def)
apply (drule_tac x="p" in spec)
apply (insert mono_sndF)
apply (simp add: mono_def)
apply (drule_tac x="A p" in spec)
apply (drule_tac x="B p" in spec)
apply (simp add: subsetF_iff order_prod_def)
done
(*--------------------------------*
| Procfun |
*--------------------------------*)
lemma mono_failures: "mono (failures P)"
apply (induct_tac P)
apply (simp add: mono_failures_STOP)
apply (simp add: mono_failures_SKIP)
apply (simp add: mono_failures_DIV)
apply (simp add: mono_failures_Act_prefix)
apply (simp add: mono_failures_Ext_pre_choice)
apply (simp add: mono_failures_Ext_choice mono_traces)
apply (simp add: mono_failures_Int_choice)
apply (simp add: mono_failures_Rep_int_choice)
apply (simp add: mono_failures_IF)
apply (simp add: mono_failures_Parallel)
apply (simp add: mono_failures_Hiding)
apply (simp add: mono_failures_Renaming)
apply (simp add: mono_failures_Seq_compo mono_traces)
apply (simp add: mono_failures_Depth_rest)
apply (simp add: mono_failures_variable)
done
(*=============================================================*
| [[P]]Ff |
*=============================================================*)
lemma mono_semFf: "mono [[Pf]]Ff"
apply (simp add: mono_def)
apply (simp add: subdomF_decompo)
apply (intro allI impI)
apply (simp add: mono_failures[simplified mono_def])
apply (subgoal_tac "mono (traces Pf)")
apply (simp add: mono_def)
apply (drule_tac x="fstF o A" in spec)
apply (drule_tac x="fstF o B" in spec)
apply (drule mp)
apply (simp add: order_prod_def)
apply (simp add: mono_fstF[simplified mono_def])
apply (simp)
apply (simp add: mono_traces)
done
(*=============================================================*
| [[P]]Ffun |
*=============================================================*)
lemma mono_semFfun: "mono [[PF]]Ffun"
apply (simp add: prod_mono)
apply (simp add: semFfun_def)
apply (simp add: comp_def)
apply (simp add: proj_fun_def)
apply (simp add: mono_semFf)
done
end
lemma mono_failures_STOP:
mono (failures STOP)
lemma mono_failures_SKIP:
mono (failures SKIP)
lemma mono_failures_DIV:
mono (failures DIV)
lemma mono_failures_Act_prefix:
mono (failures P) ==> mono (failures (a -> P))
lemma mono_failures_Ext_pre_choice:
∀a. mono (failures (Pf a)) ==> mono (failures (? :X -> Pf))
lemma mono_failures_Ext_choice:
[| mono (traces P); mono (traces Q); mono (failures P); mono (failures Q) |] ==> mono (failures (P [+] Q))
lemma mono_failures_Int_choice:
[| mono (failures P); mono (failures Q) |] ==> mono (failures (P |~| Q))
lemma mono_failures_Rep_int_choice:
∀c. mono (failures (Pf c)) ==> mono (failures (!! :C .. Pf))
lemma mono_failures_IF:
[| mono (failures P); mono (failures Q) |] ==> mono (failures (IF b THEN P ELSE Q))
lemma mono_failures_Parallel:
[| mono (failures P); mono (failures Q) |] ==> mono (failures (P |[X]| Q))
lemma mono_failures_Hiding:
mono (failures P) ==> mono (failures (P -- X))
lemma mono_failures_Renaming:
mono (failures P) ==> mono (failures (P [[r]]))
lemma mono_failures_Seq_compo:
[| mono (failures P); mono (failures Q) |] ==> mono (failures (P ;; Q))
lemma mono_failures_Depth_rest:
mono (failures P) ==> mono (failures (P |. n))
lemma mono_failures_variable:
mono (failures ($p))
lemma mono_failures:
mono (failures P)
lemma mono_semFf:
mono [[Pf]]Ff
lemma mono_semFfun:
mono [[PF]]Ffun