Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law_ufp(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | February 2005 | | June 2005 (modified) | | August 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_T_law_ufp = CSP_T_continuous + CSP_T_contraction + CSP_T_mono + CSP_T_law_decompo: (***************************************************************** 1. cms fixed point theory in CSP-Prover 2. 3. 4. *****************************************************************) (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* Union (B ` A) = (UN x:A. B x) *) (* Inter (B ` A) = (INT x:A. B x) *) declare Union_image_eq [simp del] declare Inter_image_eq [simp del] (*=======================================================* | | | CMS | | | *=======================================================*) lemma cspT_Banach_fix: "(FIX! PF)(p) =T (!nat n .. ((((PF^n) (%q. AnyInitProc)) p) |. n))" apply (simp add: FIX1_def FIX1n_def) done (*-----------* | normal | *-----------*) lemma semT_normal_FIX1_lm_induct: "ALL PF p. PF : gProcFun --> (ALL m. n <= m --> distance ([[(PF ^ n) Any p]]T, [[(PF ^ m) Any p]]T) <= (1 / 2) ^ n)" apply (rule induct [of "(%n. ALL PF p. PF : gProcFun --> (ALL m. n <= m --> distance ([[(PF ^ n) Any p]]T, [[(PF ^ m) Any p]]T) <= (1 / 2) ^ n))" n]) apply (simp add: distance_rs_less_one) (* step *) apply (intro allI impI) apply (simp only: gProcFun_implies_ProcFun iteration_in_ProcFun semTFun_f_p) apply (simp add: iteration_in_ProcFun compo_in_ProcFun semTFun_compo_semTFun_fun) apply (drule_tac x="PF" in spec) apply (simp) apply (subgoal_tac "EX m'. m = Suc m'") apply (erule exE) apply (erule exchange_forall_orderE) apply (simp) apply (simp add: iteration_in_ProcFun semTFun_compo_semTFun_fun) apply (drule_tac x="m'" in spec) apply (simp) apply (simp add: iteration_in_ProcFun compo_in_ProcFun semTFun_f_p) apply (subgoal_tac "distance ([[PF ^ n]]TFun (%p. [[Any p]]T) , [[PF ^ m']]TFun (%p. [[Any p]]T)) <= (1 / 2) ^ n") apply (rule order_trans) apply (subgoal_tac "distance ([[PF]]TFun ([[PF ^ n]]TFun (%p. [[Any p]]T)) p, [[PF]]TFun ([[PF ^ m']]TFun (%p. [[Any p]]T)) p) * 2 <= distance ([[PF]]TFun ([[PF ^ n]]TFun (%p. [[Any p]]T)), [[PF]]TFun ([[PF ^ m']]TFun (%p. [[Any p]]T))) * 2") apply (assumption) apply (simp) apply (rule prod_distance_rs_le) apply (subgoal_tac "contraction_alpha [[PF]]TFun (1/2)") apply (simp add: contraction_alpha_def) apply (simp add: map_alpha_def) apply (drule_tac x="([[PF ^ n]]TFun (%p. [[Any p]]T))" in spec) apply (drule_tac x="([[PF ^ m']]TFun (%p. [[Any p]]T))" in spec) apply (rule order_trans) apply (assumption) apply (simp) apply (simp add: contraction_alpha_semTFun) apply (simp add: prod_distance_least) apply (insert nat_zero_or_Suc) apply (drule_tac x="m" in spec) apply (simp) done lemma semT_normal_FIX1_lm: "PF : gProcFun ==> distance ([[(PF ^ n) Any p]]T, [[(PF ^ m) Any p]]T) <= (1 / 2) ^ min n m" apply (case_tac "n <= m") apply (simp add: min_def) apply (simp add: semT_normal_FIX1_lm_induct) apply (simp add: min_def) apply (subgoal_tac "distance ([[(PF ^ n) Any p]]T, [[(PF ^ m) Any p]]T) = distance ([[(PF ^ m) Any p]]T, [[(PF ^ n) Any p]]T)") apply (simp add: semT_normal_FIX1_lm_induct) apply (simp add: symmetry_ms) done (* normal *) lemma semT_normal_FIX1: "PF : gProcFun ==> normal (%n. [[(FIX![n] PF) p]]T)" apply (unfold normal_def) apply (intro allI) apply (simp add: FIX1n_def del: funpow.simps) apply (rule order_trans) apply (rule semT_normal_FIX1_lm) apply (simp_all) done (* normal p *) lemma semT_normal_FIX1_p: "PF : gProcFun ==> normal (%n p. [[(FIX![n] PF) p]]T)" apply (simp add: prod_normal_seq_iff) apply (intro allI) apply (simp add: proj_fun_def) apply (simp add: comp_def) apply (simp add: semT_normal_FIX1) done (*-----------* | limit | *-----------*) lemma semT_FIX1_prod_Limit_lm: "normal (%x. traces((FIX![x] PF) p)) ==> traces (!nat n .. (FIX![n] PF) p |. n) = Limit_domT (%x. traces ((FIX![x] PF) p))" apply (rule order_antisym) (* <= *) apply (rule) apply (simp add: in_traces) apply (erule disjE) apply (simp) apply (elim conjE exE) apply (simp add: Limit_domT_def) apply (simp (no_asm_simp) add: memT_def) apply (simp add: Abs_domT_inverse) apply (simp add: LimitT_def) apply (subgoal_tac "(t :t traces ((FIX![lengtht t] PF) p)) = (t :t traces ((FIX![a] PF) p))") apply (simp) apply (rule normal_seq_domT) apply (simp_all) (* => *) apply (rule) apply (simp add: in_traces) apply (simp add: Limit_domT_def) apply (simp add: memT_def) apply (simp add: Abs_domT_inverse) apply (fold memT_def) apply (simp add: LimitT_def) apply (rule disjI2) apply (rule_tac x="(lengtht t)" in exI) apply (simp) done lemma semT_FIX1_prod_Limit: "PF : gProcFun ==> [[(FIX! PF) p]]T = (prod_Limit (%n p. [[(FIX![n] PF) p]]T)) p" apply (simp add: prod_Limit_def) apply (simp add: proj_fun_def) apply (simp add: comp_def) apply (subgoal_tac "normal (%x. [[(FIX![x] PF) p]]T)") apply (simp add: Limit_domT_Limit_eq) apply (simp add: FIX1_def) apply (simp add: semT_def) apply (simp add: semT_FIX1_prod_Limit_lm) apply (simp add: semT_normal_FIX1) done (*--------------* | convergeTo | *--------------*) lemma semT_FIX1_convergeTo_prod_Limit: "PF : gProcFun ==> (%n p. [[(FIX![n] PF) p]]T) convergeTo (prod_Limit (%n p. [[(FIX![n] PF) p]]T))" apply (rule prod_cms_normal_Limit) apply (simp add: prod_normal_seq_iff) apply (rule allI) apply (simp add: proj_fun_def) apply (simp add: comp_def) apply (simp add: semT_normal_FIX1) done lemma semT_FIX1_convergeTo_FIX1: "PF : gProcFun ==> (%n p. [[(FIX![n] PF) p]]T) convergeTo (%p. [[(FIX! PF) p]]T)" apply (simp add: semT_FIX1_prod_Limit) apply (simp add: semT_FIX1_convergeTo_prod_Limit) done (*--------------* | UFP | *--------------*) lemma semT_FIX1_UFP: "PF : gProcFun ==> (%p. [[(FIX! PF) p]]T) = UFP [[PF]]TFun" apply (simp add: expand_fun_eq) apply (rule allI) apply (insert semT_FIX1_convergeTo_FIX1[of PF]) apply (simp add: semT_normal_FIX1_p prod_convergeTo) apply (simp add: proj_fun_def) apply (simp add: comp_def) apply (drule_tac x="x" in spec) apply (insert semT_normal_FIX1_p[of PF]) apply (simp add: FIX1n_def) apply (simp add: semTFun_f_p iteration_in_ProcFun) apply (simp add: semTFun_compo_n_Tf) apply (insert Banach_thm_prod[of "[[PF]]TFun" "(%p. [[AnyInitProc]]T)"]) apply (simp add: contraction_semTFun) apply (erule conjE) apply (drule_tac x="x" in spec) apply (simp add: unique_convergence) done lemma traces_FIX1_UFP: "PF : gProcFun ==> (%p. traces ((FIX! PF) p)) = UFP (tracesFun PF)" apply (simp add: semT_FIX1_UFP[simplified semT_def]) apply (simp add: semTFun_tracesFun) done lemma semT_FIX1_UFP_p: "PF : gProcFun ==> [[(FIX! PF) p]]T = UFP [[PF]]TFun p" apply (insert semT_FIX1_UFP[of PF]) apply (simp add: expand_fun_eq) done lemma semT_FIX1_isUFP: "PF : gProcFun ==> (%p. [[(FIX! PF) p]]T) isUFP [[PF]]TFun" apply (simp add: semT_FIX1_UFP) apply (simp add: contraction_semTFun Banach_thm_EX UFP_is) done lemma semT_FIX1_UFP_unique: "PF : gProcFun ==> ALL Tf. [[PF]]TFun Tf = Tf --> (%p. [[(FIX! PF) p]]T) = Tf" apply (insert semT_FIX1_isUFP[of PF], simp) apply (simp add: isUFP_def) done lemma semT_FIX1_UFP_fixed_point: "PF : gProcFun ==> [[PF]]TFun (%p. [[(FIX! PF) p]]T) = (%p. [[(FIX! PF) p]]T)" apply (insert semT_FIX1_isUFP[of PF], simp) apply (simp add: isUFP_def) done (*------------------------------------------------------------------* | FIX! is the unique fixed point of process-expression-functions | *------------------------------------------------------------------*) lemma cspT_FIX1_isUFP: "PF : gProcFun ==> (FIX! PF) =T' (PF (FIX! PF)) & (ALL f. f =T' PF f --> f =T' (FIX! PF))" apply (simp add: refT_prod_def eqT_prod_def) apply (simp add: refT_def eqT_def) apply (insert semT_FIX1_isUFP[of PF], simp) apply (rule) (* FP *) apply (simp add: expand_fun_eq[THEN sym]) apply (simp add: semTFun_f_p) apply (simp add: isUFP_def) (* UFP *) apply (intro allI impI) apply (simp add: expand_fun_eq[THEN sym]) apply (drule sym) apply (simp add: expand_fun_eq) apply (simp add: expand_fun_eq[THEN sym]) apply (simp add: semTFun_f_p) apply (simp add: isUFP_def) apply (erule conjE) apply (drule_tac x="(%p. [[f p]]T)" in spec) apply (simp add: order_prod_def) apply (simp add: expand_fun_eq) done (*-------------------------------------------------------* | | | Fixpoint unwind (CSP-Prover rule) | | | *-------------------------------------------------------*) lemma cspT_unwind_cms_lm: "PF : gProcFun ==> ALL p. (FIX! PF) p =T PF (FIX! PF) p" apply (simp add: eqT_def) apply (simp add: expand_fun_eq[THEN sym]) apply (simp add: semTFun_f_p) apply (simp add: semT_FIX1_UFP_fixed_point) done (*** csp rule ***) lemma cspT_unwind_cms: "PF : gProcFun ==> (FIX! PF) p =T PF (FIX! PF) p" by (simp add: cspT_unwind_cms_lm) (*-------------------------------------------------------* | | | Check fixpoint (CSP-Prover intro rule) | | | *-------------------------------------------------------*) (* refinement *) lemma cspT_fp_induct_cms_ref_left_lm: "[| PF : gProcFun ; f p <=T Q ; ALL p. (PF f) p <=T f p |] ==> (FIX! PF) p <=T Q" apply (simp add: refT_def) apply (simp add: fold_order_prod_def) apply (simp add: semTFun_f_p) apply (simp add: semT_FIX1_UFP_p) apply (insert cms_fixpoint_induction_ref [of "[[PF]]TFun" "(%p. [[f p]]T)" "UFP [[PF]]TFun"]) apply (simp add: contra_alpha_to_contst contraction_alpha_semTFun) apply (simp add: mono_semTFun) apply (simp add: contraction_semTFun UFP_fp Banach_thm_EX) apply (simp add: order_prod_def) apply (rotate_tac -1) apply (drule_tac x="p" in spec) apply (simp) done (*** csp rule ***) lemma cspT_fp_induct_cms_ref_left: "[| PF : gProcFun ; f p <=T Q ; !! p. (PF f) p <=T f p |] ==> (FIX! PF) p <=T Q" by (simp add: cspT_fp_induct_cms_ref_left_lm) (*** right ***) lemma cspT_fp_induct_cms_right_lm: "[| PF : gProcFun ; Q <=T f p ; ALL p. f p <=T (PF f) p |] ==> Q <=T (FIX! PF) p" apply (simp add: refT_def) apply (simp add: fold_order_prod_def) apply (simp add: semTFun_f_p) apply (simp add: semT_FIX1_UFP_p) apply (insert cms_fixpoint_induction_rev [of "[[PF]]TFun" "(%p. [[f p]]T)" "UFP [[PF]]TFun"]) apply (simp add: contra_alpha_to_contst contraction_alpha_semTFun) apply (simp add: mono_semTFun) apply (simp add: contraction_semTFun UFP_fp Banach_thm_EX) apply (simp add: order_prod_def) apply (rotate_tac -1) apply (drule_tac x="p" in spec) apply (simp) done (*** csp rule ***) lemma cspT_fp_induct_cms_ref_right: "[| PF : gProcFun ; Q <=T f p ; !!p. f p <=T (PF f) p |] ==> Q <=T (FIX! PF) p" by (simp add: cspT_fp_induct_cms_right_lm) (* equivalence *) lemma cspT_fp_induct_cms_eq_left_lm: "[| PF : gProcFun ; f p =T Q ; ALL p. (PF f) p =T f p |] ==> (FIX! PF) p =T Q" apply (simp add: eqT_def) apply (simp add: expand_fun_eq[THEN sym]) apply (simp add: semTFun_f_p) apply (insert semT_FIX1_isUFP[of PF], simp) apply (simp add: isUFP_def) apply (elim conjE) apply (drule_tac x="(%p. [[f p]]T)" in spec) apply (simp add: expand_fun_eq) done (*** csp rule ***) lemma cspT_fp_induct_cms_eq_left: "[| PF : gProcFun ; f p =T Q ; !! p. (PF f) p =T f p |] ==> (FIX! PF) p =T Q" by (simp add: cspT_fp_induct_cms_eq_left_lm) lemma cspT_fp_induct_cms_eq_right: "[| PF : gProcFun ; Q =T f p ; !! p. f p =T (PF f) p |] ==> Q =T (FIX! PF) p" apply (rule cspT_sym) apply (rule cspT_fp_induct_cms_eq_left) apply (simp) apply (rule cspT_sym) apply (simp) apply (rule cspT_sym) apply (simp) done lemmas cspT_fp_induct_cms_left = cspT_fp_induct_cms_ref_left cspT_fp_induct_cms_eq_left lemmas cspT_fp_induct_cms_right = cspT_fp_induct_cms_ref_right cspT_fp_induct_cms_eq_right (*=======================================================* | | | Single recursion MU | | | *=======================================================*) (*=======================================================* | cms | *=======================================================*) (*------------------------------------------------------------------* | MUX! is the unique fixed point of process-expression-functions | *------------------------------------------------------------------*) lemma cspT_MU1_isUFP: "PX : gProcX ==> MUX! PX =T PX (MUX! PX) & (ALL P. P =T PX P --> P =T (MUX! PX))" apply (simp add: MUX1_def) apply (insert cspT_FIX1_isUFP[of "(%f p. PX (f MUp))"]) apply (simp add: gProcX_def gProcFun_def) apply (simp add: eqT_prod_def) apply (intro allI impI) apply (elim conjE) apply (drule_tac x="(%p. P)" in spec) apply (simp) done (*-------------------------------------------------------* | unwinding (CSP-Prover intro rule) | *-------------------------------------------------------*) lemma cspT_unwind_MU_cms: "PX : gProcX ==> MUX! PX =T PX (MUX! PX)" apply (simp add: MUX1_def)--koko apply (insert cspT_unwind_cms[of "(%f p. PX (f MUp))" "MUp"]) apply (simp add: gProcX_def gProcFun_def) done (*-------------------------------------------------------* | Check fixpoint (CSP-Prover intro rule) | *-------------------------------------------------------*) lemma cspT_fp_induct_MU_cms_ref_left: "[| PX : gProcX ; PX Q <=T Q |] ==> (MUX! PX) <=T Q" apply (simp add: MUX1_def) apply (rule cspT_fp_induct_cms_ref_left[of _ "(%X. Q)"]) apply (simp add: gProcX_def) apply (simp add: gProcFun_def) apply (simp) apply (simp) done lemma cspT_fp_induct_MU_cms_ref_right: "[| PX : gProcX ; Q <=T PX Q |] ==> Q <=T (MUX! PX)" apply (simp add: MUX1_def) apply (rule cspT_fp_induct_cms_ref_right[of _ _"(%X. Q)"]) apply (simp add: gProcX_def) apply (simp add: gProcFun_def) apply (simp) apply (simp) done lemma cspT_fp_induct_MU_cms_eq_left: "[| PX : gProcX ; PX Q =T Q |] ==> (MUX! PX) =T Q" apply (simp add: MUX1_def) apply (rule cspT_fp_induct_cms_eq_left[of _ "(%X. Q)"]) apply (simp add: gProcX_def) apply (simp add: gProcFun_def) apply (simp) apply (simp) done lemma cspT_fp_induct_MU_cms_eq_right: "[| PX : gProcX ; Q =T PX Q |] ==> Q =T (MUX! PX)" apply (rule cspT_sym) apply (rule cspT_fp_induct_MU_cms_eq_left) apply (simp) apply (rule cspT_sym) apply (simp) done lemmas cspT_fp_induct_MU_cms_left = cspT_fp_induct_MU_cms_ref_left cspT_fp_induct_MU_cms_eq_left lemmas cspT_fp_induct_MU_cms_right = cspT_fp_induct_MU_cms_ref_right cspT_fp_induct_MU_cms_eq_right (*=======================================================* | expand by Banach | *=======================================================*) lemma cspT_MU_eq_cms: "PX : gProcX ==> (MUX! PX) =T (!nat n .. ((PX ^ n) AnyInitProc) |. n)" apply (simp add: MUX1_def) apply (simp add: FIX1_def) apply (simp add: FIX1n_def) apply (rule cspT_decompo) apply (simp) apply (simp) apply (induct_tac n) apply (simp) (* step *) apply (simp add: cspT_semantics) apply (simp add: traces.simps) apply (subgoal_tac "constructive_rs (tracesFun (%f p. PX (f MUp)))") (* sub 1 *) apply (simp add: constructive_rs_def) apply (simp add: tracesFun_def) apply (simp add: tracesfun_def) apply (drule_tac x= "(%p. traces (((%f n. PX (f MUp)) ^ na) (%q. AnyInitProc) MUp))" in spec) apply (drule_tac x="(%p. traces ((PX ^ na) AnyInitProc))" in spec) apply (drule_tac x="na" in spec) apply (simp add: prod_restriction_def) apply (simp add: expand_fun_eq) apply (subgoal_tac "(PX (Proc_T (traces (((%f n. PX (f MUp)) ^ na) (%q. AnyInitProc) MUp)))) =T (PX (((%f n. PX (f MUp)) ^ na) (%q. AnyInitProc) MUp))") (* sub 2 *) apply (subgoal_tac "(PX (Proc_T(traces ((PX ^ na) AnyInitProc)))) =T (PX ((PX ^ na) AnyInitProc))") (* sub 3 *) apply (simp add: cspT_semantics) (* sub 3*) apply (rule cspT_ProcX_cong[of PX]) apply (simp) apply (simp add: cspT_semantics) apply (simp add: traces_Proc_T) (* sub 2*) apply (rule cspT_ProcX_cong[of PX]) apply (simp) apply (simp add: cspT_semantics) apply (simp add: traces_Proc_T) (* sub 1 *) apply (rule contra_alpha_to_contst) apply (rule contraction_alpha_tracesFun) apply (simp add: gProcX_def gProcFun_def) done (****************** to add them again ******************) declare Union_image_eq [simp] declare Inter_image_eq [simp] end
lemma cspT_Banach_fix:
(FIX! PF) p =T !nat n .. (PF ^ n) (%q. AnyInitProc) p |. n
lemma semT_normal_FIX1_lm_induct:
∀PF p. PF ∈ gProcFun --> (∀m≥n. distance ([[(PF ^ n) Any p]]T, [[(PF ^ m) Any p]]T) ≤ (1 / 2) ^ n)
lemma semT_normal_FIX1_lm:
PF ∈ gProcFun ==> distance ([[(PF ^ n) Any p]]T, [[(PF ^ m) Any p]]T) ≤ (1 / 2) ^ min n m
lemma semT_normal_FIX1:
PF ∈ gProcFun ==> normal (%n. [[(FIX![n] PF) p]]T)
lemma semT_normal_FIX1_p:
PF ∈ gProcFun ==> normal (%n p. [[(FIX![n] PF) p]]T)
lemma semT_FIX1_prod_Limit_lm:
normal (%x. traces ((FIX![x] PF) p)) ==> traces (!nat n .. (FIX![n] PF) p |. n) = Limit_domT (%x. traces ((FIX![x] PF) p))
lemma semT_FIX1_prod_Limit:
PF ∈ gProcFun ==> [[(FIX! PF) p]]T = prod_Limit (%n p. [[(FIX![n] PF) p]]T) p
lemma semT_FIX1_convergeTo_prod_Limit:
PF ∈ gProcFun ==> (%n p. [[(FIX![n] PF) p]]T) convergeTo prod_Limit (%n p. [[(FIX![n] PF) p]]T)
lemma semT_FIX1_convergeTo_FIX1:
PF ∈ gProcFun ==> (%n p. [[(FIX![n] PF) p]]T) convergeTo (%p. [[(FIX! PF) p]]T)
lemma semT_FIX1_UFP:
PF ∈ gProcFun ==> (%p. [[(FIX! PF) p]]T) = UFP [[PF]]TFun
lemma traces_FIX1_UFP:
PF ∈ gProcFun ==> (%p. traces ((FIX! PF) p)) = UFP (tracesFun PF)
lemma semT_FIX1_UFP_p:
PF ∈ gProcFun ==> [[(FIX! PF) p]]T = UFP [[PF]]TFun p
lemma semT_FIX1_isUFP:
PF ∈ gProcFun ==> (%p. [[(FIX! PF) p]]T) isUFP [[PF]]TFun
lemma semT_FIX1_UFP_unique:
PF ∈ gProcFun ==> ∀Tf. [[PF]]TFun Tf = Tf --> (%p. [[(FIX! PF) p]]T) = Tf
lemma semT_FIX1_UFP_fixed_point:
PF ∈ gProcFun ==> [[PF]]TFun (%p. [[(FIX! PF) p]]T) = (%p. [[(FIX! PF) p]]T)
lemma cspT_FIX1_isUFP:
PF ∈ gProcFun ==> FIX! PF =T' PF (FIX! PF) ∧ (∀f. f =T' PF f --> f =T' FIX! PF)
lemma cspT_unwind_cms_lm:
PF ∈ gProcFun ==> ∀p. (FIX! PF) p =T PF (FIX! PF) p
lemma cspT_unwind_cms:
PF ∈ gProcFun ==> (FIX! PF) p =T PF (FIX! PF) p
lemma cspT_fp_induct_cms_ref_left_lm:
[| PF ∈ gProcFun; f p <=T Q; ∀p. PF f p <=T f p |] ==> (FIX! PF) p <=T Q
lemma cspT_fp_induct_cms_ref_left:
[| PF ∈ gProcFun; f p <=T Q; !!p. PF f p <=T f p |] ==> (FIX! PF) p <=T Q
lemma cspT_fp_induct_cms_right_lm:
[| PF ∈ gProcFun; Q <=T f p; ∀p. f p <=T PF f p |] ==> Q <=T (FIX! PF) p
lemma cspT_fp_induct_cms_ref_right:
[| PF ∈ gProcFun; Q <=T f p; !!p. f p <=T PF f p |] ==> Q <=T (FIX! PF) p
lemma cspT_fp_induct_cms_eq_left_lm:
[| PF ∈ gProcFun; f p =T Q; ∀p. PF f p =T f p |] ==> (FIX! PF) p =T Q
lemma cspT_fp_induct_cms_eq_left:
[| PF ∈ gProcFun; f p =T Q; !!p. PF f p =T f p |] ==> (FIX! PF) p =T Q
lemma cspT_fp_induct_cms_eq_right:
[| PF ∈ gProcFun; Q =T f p; !!p. f p =T PF f p |] ==> Q =T (FIX! PF) p
lemmas cspT_fp_induct_cms_left:
[| PF ∈ gProcFun; f p <=T Q; !!p. PF f p <=T f p |] ==> (FIX! PF) p <=T Q
[| PF ∈ gProcFun; f p =T Q; !!p. PF f p =T f p |] ==> (FIX! PF) p =T Q
lemmas cspT_fp_induct_cms_left:
[| PF ∈ gProcFun; f p <=T Q; !!p. PF f p <=T f p |] ==> (FIX! PF) p <=T Q
[| PF ∈ gProcFun; f p =T Q; !!p. PF f p =T f p |] ==> (FIX! PF) p =T Q
lemmas cspT_fp_induct_cms_right:
[| PF ∈ gProcFun; Q <=T f p; !!p. f p <=T PF f p |] ==> Q <=T (FIX! PF) p
[| PF ∈ gProcFun; Q =T f p; !!p. f p =T PF f p |] ==> Q =T (FIX! PF) p
lemmas cspT_fp_induct_cms_right:
[| PF ∈ gProcFun; Q <=T f p; !!p. f p <=T PF f p |] ==> Q <=T (FIX! PF) p
[| PF ∈ gProcFun; Q =T f p; !!p. f p =T PF f p |] ==> Q =T (FIX! PF) p
lemma cspT_MU1_isUFP:
PX ∈ gProcX ==> MUX! PX =T PX (MUX! PX) ∧ (∀P. P =T PX P --> P =T MUX! PX)
lemma cspT_unwind_MU_cms:
PX ∈ gProcX ==> MUX! PX =T PX (MUX! PX)
lemma cspT_fp_induct_MU_cms_ref_left:
[| PX ∈ gProcX; PX Q <=T Q |] ==> MUX! PX <=T Q
lemma cspT_fp_induct_MU_cms_ref_right:
[| PX ∈ gProcX; Q <=T PX Q |] ==> Q <=T MUX! PX
lemma cspT_fp_induct_MU_cms_eq_left:
[| PX ∈ gProcX; PX Q =T Q |] ==> MUX! PX =T Q
lemma cspT_fp_induct_MU_cms_eq_right:
[| PX ∈ gProcX; Q =T PX Q |] ==> Q =T MUX! PX
lemmas cspT_fp_induct_MU_cms_left:
[| PX ∈ gProcX; PX Q <=T Q |] ==> MUX! PX <=T Q
[| PX ∈ gProcX; PX Q =T Q |] ==> MUX! PX =T Q
lemmas cspT_fp_induct_MU_cms_left:
[| PX ∈ gProcX; PX Q <=T Q |] ==> MUX! PX <=T Q
[| PX ∈ gProcX; PX Q =T Q |] ==> MUX! PX =T Q
lemmas cspT_fp_induct_MU_cms_right:
[| PX ∈ gProcX; Q <=T PX Q |] ==> Q <=T MUX! PX
[| PX ∈ gProcX; Q =T PX Q |] ==> Q =T MUX! PX
lemmas cspT_fp_induct_MU_cms_right:
[| PX ∈ gProcX; Q <=T PX Q |] ==> Q <=T MUX! PX
[| PX ∈ gProcX; Q =T PX Q |] ==> Q =T MUX! PX
lemma cspT_MU_eq_cms:
PX ∈ gProcX ==> MUX! PX =T !nat n .. (PX ^ n) AnyInitProc |. n