Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_continuous (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| December 2004 |
| July 2005 (modified) |
| August 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| October 2005 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_T_continuous = CSP_T_tracesfun + Domain_T_cpo + CPO_prod:
(*****************************************************************
1. continuous tracesfun
2. continuous tracesFun
3. continuous [[ ]]Tfun
4. continuous [[ ]]TFun
*****************************************************************)
(*--------------------------------*
| STOP,SKIP,DIV |
*--------------------------------*)
(*** Constant_continuous ***)
lemma continuous_Constant: "continuous (%f. P)"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (insert complete_cpo_lm)
apply (drule_tac x="X" in spec, simp)
apply (simp add: hasLUB_def)
apply (elim exE)
apply (simp add: image_def isLUB_def isUB_def)
apply (intro allI impI)
apply (elim conjE exE)
apply (drule mp)
apply (simp add: directed_def)
apply (auto)
done
lemma continuous_tracesfun_STOP: "continuous (tracesfun (%f. STOP))"
by (simp add: tracesfun_simp continuous_Constant)
lemma continuous_tracesfun_SKIP: "continuous (tracesfun (%f. SKIP))"
by (simp add: tracesfun_simp continuous_Constant)
lemma continuous_tracesfun_DIV: "continuous (tracesfun (%f. DIV))"
by (simp add: tracesfun_simp continuous_Constant)
(*--------------------------------*
| Act_prefix |
*--------------------------------*)
lemma continuous_tracesfun_Act_prefix:
"continuous (tracesfun Pf) ==> continuous (tracesfun (%f. a -> (Pf f)))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_tracesfun)
apply (erule disjE, fast)
apply (elim conjE exE)
apply (simp)
(* => *)
apply (rule)
apply (simp)
apply (erule bexE)
apply (simp add: in_tracesfun)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (rule disjI2)
apply (rule_tac x="s" in exI, simp)
apply (rule_tac x="xa" in bexI)
apply (simp_all)
by (simp add: directed_def)
(*--------------------------------*
| Ext_pre_choice |
*--------------------------------*)
lemma continuous_tracesfun_Ext_pre_choice:
"ALL a. continuous (tracesfun (Pff a))
==> continuous (tracesfun (%f. ? a:X -> (Pff a f)))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (subgoal_tac "Xa ~= {}")
apply (erule exchange_forall_orderE)
apply (drule_tac x="Xa" in spec)
apply (simp add: isLUB_UnionT)
apply (rule_tac x="LUB Xa" in exI)
apply (rule conjI)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_tracesfun)
apply (erule disjE, fast)
apply (elim conjE exE)
apply (simp)
apply (drule_tac x="a" in spec)
apply (elim conjE exE)
apply (subgoal_tac "LUB Xa = x", simp)
apply (simp add: isLUB_LUB)
(* => *)
apply (rule)
apply (simp)
apply (erule bexE)
apply (simp add: in_tracesfun)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (rule disjI2)
apply (rule_tac x="a" in exI)
apply (rule_tac x="s" in exI, simp)
apply (drule_tac x="a" in spec)
apply (elim conjE exE)
apply (subgoal_tac "LUB Xa = xa", simp)
apply (rule_tac x="x" in bexI)
apply (simp)
apply (simp)
apply (simp add: isLUB_LUB)
apply (drule_tac x="a" in spec)
apply (elim conjE exE)
apply (simp add: isLUB_LUB)
by (simp add: directed_def)
(*--------------------------------*
| Ext_choice |
*--------------------------------*)
lemma continuous_tracesfun_Ext_choice:
"[| continuous (tracesfun Pf) ; continuous (tracesfun Qf) |]
==> continuous (tracesfun (%f. (Pf f [+] Qf f)))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (subgoal_tac "xa = x")
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
apply (rule, simp add: in_tracesfun, fast)
apply (rule, simp add: in_tracesfun, fast)
apply (simp add: directed_def)
by (rule LUB_unique, simp_all)
(*--------------------------------*
| Int_choice |
*--------------------------------*)
lemma continuous_tracesfun_Int_choice:
"[| continuous (tracesfun Pf) ; continuous (tracesfun Qf) |]
==> continuous (tracesfun (%f. (Pf f |~| Qf f)))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (subgoal_tac "xa = x")
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
apply (rule, simp add: in_tracesfun, fast)
apply (rule, simp add: in_tracesfun, fast)
apply (simp add: directed_def)
by (rule LUB_unique, simp_all)
(*--------------------------------*
| Rep_int_choice |
*--------------------------------*)
lemma continuous_tracesfun_Rep_int_choice:
"ALL c. continuous (tracesfun (Pff c))
==> continuous (tracesfun (%f. !! c:C .. (Pff c f)))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (subgoal_tac "X ~= {}")
apply (erule exchange_forall_orderE)
apply (drule_tac x="X" in spec)
apply (simp add: isLUB_UnionT)
apply (rule_tac x="LUB X" in exI)
apply (rule conjI)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_tracesfun)
apply (erule disjE, fast)
apply (elim conjE bexE)
apply (drule_tac x="c" in spec)
apply (elim conjE exE)
apply (subgoal_tac "LUB X = x", simp)
apply (elim bexE)
apply (rule_tac x="xa" in bexI)
apply (fast)
apply (simp)
apply (simp add: isLUB_LUB)
(* => *)
apply (rule)
apply (simp)
apply (erule bexE)
apply (simp add: in_tracesfun)
apply (erule disjE, simp)
apply (elim conjE bexE)
apply (rule disjI2)
apply (rule_tac x="c" in bexI)
apply (drule_tac x="c" in spec)
apply (elim conjE exE)
apply (subgoal_tac "LUB X = xa", simp)
apply (rule_tac x="x" in bexI)
apply (simp)
apply (simp)
apply (simp add: isLUB_LUB)
apply (simp)
apply (drule_tac x="c" in spec)
apply (elim conjE exE)
apply (simp add: isLUB_LUB)
by (simp add: directed_def)
(*--------------------------------*
| IF |
*--------------------------------*)
lemma continuous_tracesfun_IF:
"[| continuous (tracesfun Pf) ; continuous (tracesfun Qf) |]
==> continuous (tracesfun (%f. IF b THEN (Pf f) ELSE (Qf f)))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (case_tac "b")
apply (rule_tac x="x" in exI, simp)
apply (simp add: tracesfun_def)
apply (simp add: traces_def)
apply (rule_tac x="x" in exI, simp)
apply (simp add: tracesfun_def)
apply (simp add: traces_def)
apply (subgoal_tac "xa = x", simp)
by (rule LUB_unique, simp_all)
(*--------------------------------*
| Parallel |
*--------------------------------*)
lemma continuous_tracesfun_Parallel:
"[| continuous (tracesfun Pf) ; continuous (tracesfun Qf) |]
==> continuous (tracesfun (%f. (Pf f) |[X]| (Qf f)))"
apply (subgoal_tac "mono (tracesfun Pf) & mono (tracesfun Qf)")
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="Xa" in spec, simp)
apply (drule_tac x="Xa" in spec, simp)
apply (elim conjE exE)
apply (subgoal_tac "xa = x")
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "Xa ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_tracesfun)
apply (elim exE bexE conjE)
apply (simp add: directed_def)
apply (drule_tac x="xb" in spec)
apply (drule_tac x="xc" in spec)
apply (simp, elim conjE exE)
apply (rule_tac x="z" in bexI)
apply (rule_tac x="s" in exI)
apply (rule_tac x="ta" in exI)
apply (simp)
apply (rule conjI)
apply (rule memT_subdomT, simp)
apply (simp add: mono_def)
apply (rotate_tac -4)
apply (rule memT_subdomT, simp)
apply (simp add: mono_def)
apply (simp)
(* => *)
apply (rule)
apply (simp add: in_tracesfun)
apply (fast)
apply (simp add: directed_def)
apply (simp add: LUB_unique)
by (simp add: continuous_mono)
(*--------------------------------*
| Hiding |
*--------------------------------*)
lemma continuous_tracesfun_Hiding:
"continuous (tracesfun Pf)
==> continuous (tracesfun (%f. (Pf f) -- X))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="Xa" in spec, simp)
apply (elim conjE exE)
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "Xa ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_tracesfun)
apply (fast)
(* => *)
apply (rule)
apply (simp add: in_tracesfun)
apply (fast)
by (simp add: directed_def)
(*--------------------------------*
| Renaming |
*--------------------------------*)
lemma continuous_tracesfun_Renaming:
"continuous (tracesfun Pf)
==> continuous (tracesfun (%f. (Pf f) [[r]]))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
apply (rule, simp add: in_tracesfun, fast)
apply (rule, simp add: in_tracesfun, fast)
by (simp add: directed_def)
(*--------------------------------*
| Seq_compo |
*--------------------------------*)
lemma continuous_tracesfun_Seq_compo:
"[| continuous (tracesfun Pf) ; continuous (tracesfun Qf) |]
==> continuous (tracesfun (%f. (Pf f ;; Qf f)))"
apply (subgoal_tac "mono (tracesfun Pf) & mono (tracesfun Qf)")
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (subgoal_tac "xa = x")
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_tracesfun)
apply (elim bexE exE conjE disjE)
apply (rule_tac x="xb" in bexI)
apply (fast)
apply (simp)
apply (simp add: directed_def)
apply (drule_tac x="xb" in spec)
apply (drule_tac x="xc" in spec)
apply (simp, elim conjE exE)
apply (rule_tac x="z" in bexI)
apply (rule disjI2)
apply (rule_tac x="s" in exI)
apply (rule_tac x="ta" in exI)
apply (simp)
apply (rule conjI)
apply (rule memT_subdomT, simp)
apply (simp add: mono_def)
apply (rotate_tac -4)
apply (rule memT_subdomT, simp)
apply (simp add: mono_def)
apply (simp)
(* => *)
apply (rule)
apply (simp add: in_tracesfun)
apply (fast)
apply (simp add: directed_def)
apply (simp add: LUB_unique)
by (simp add: continuous_mono)
(*--------------------------------*
| Depth_rest |
*--------------------------------*)
lemma continuous_tracesfun_Depth_rest:
"continuous (tracesfun Pf)
==> continuous (tracesfun (%f. (Pf f) |. n))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
apply (rule, simp add: in_tracesfun)
apply (rule, simp add: in_tracesfun)
by (simp add: directed_def)
(*--------------------------------*
| variable |
*--------------------------------*)
lemma continuous_tracesfun_variable:
"continuous (tracesfun (%f. f pn))"
apply (simp add: tracesfun_simp)
apply (simp add: continuous_prod_variable)
done
(*--------------------------------*
| Procfun |
*--------------------------------*)
lemma continuous_tracesfun:
"Pf : Procfun ==> continuous (tracesfun Pf)"
apply (rule Procfun.induct[of Pf])
apply (simp)
apply (simp add: continuous_tracesfun_variable)
apply (simp add: continuous_tracesfun_STOP)
apply (simp add: continuous_tracesfun_SKIP)
apply (simp add: continuous_tracesfun_DIV)
apply (simp add: continuous_tracesfun_Act_prefix)
apply (simp add: continuous_tracesfun_Ext_pre_choice)
apply (simp add: continuous_tracesfun_Ext_choice)
apply (simp add: continuous_tracesfun_Int_choice)
apply (simp add: continuous_tracesfun_Rep_int_choice)
apply (simp add: continuous_tracesfun_IF)
apply (simp add: continuous_tracesfun_Parallel)
apply (simp add: continuous_tracesfun_Hiding)
apply (simp add: continuous_tracesfun_Renaming)
apply (simp add: continuous_tracesfun_Seq_compo)
apply (simp add: continuous_tracesfun_Depth_rest)
done
(*=============================================================*
| [[P]]Tfun |
*=============================================================*)
lemma continuous_semTfun:
"Pf : Procfun ==> continuous [[Pf]]Tfun"
by (simp add: semT_to_traces continuous_tracesfun)
(*=============================================================*
| tracesFun |
*=============================================================*)
lemma continuous_tracesFun:
"PF : ProcFun ==> continuous (tracesFun PF)"
apply (simp add: prod_continuous)
apply (simp add: proj_tracesFun_tracesfun)
apply (simp add: ProcFun_def)
apply (simp add: continuous_tracesfun)
done
(*=============================================================*
| [[P]]TFun |
*=============================================================*)
lemma continuous_semTFun:
"PF : ProcFun ==> continuous [[PF]]TFun"
by (simp add: semT_to_traces continuous_tracesFun)
end
lemma continuous_Constant:
continuous (%f. P)
lemma continuous_tracesfun_STOP:
continuous (tracesfun (%f. STOP))
lemma continuous_tracesfun_SKIP:
continuous (tracesfun (%f. SKIP))
lemma continuous_tracesfun_DIV:
continuous (tracesfun (%f. DIV))
lemma continuous_tracesfun_Act_prefix:
continuous (tracesfun Pf) ==> continuous (tracesfun (%f. a -> Pf f))
lemma continuous_tracesfun_Ext_pre_choice:
∀a. continuous (tracesfun (Pff a)) ==> continuous (tracesfun (%f. ? a:X -> Pff a f))
lemma continuous_tracesfun_Ext_choice:
[| continuous (tracesfun Pf); continuous (tracesfun Qf) |] ==> continuous (tracesfun (%f. Pf f [+] Qf f))
lemma continuous_tracesfun_Int_choice:
[| continuous (tracesfun Pf); continuous (tracesfun Qf) |] ==> continuous (tracesfun (%f. Pf f |~| Qf f))
lemma continuous_tracesfun_Rep_int_choice:
∀c. continuous (tracesfun (Pff c)) ==> continuous (tracesfun (%f. !! c:C .. Pff c f))
lemma continuous_tracesfun_IF:
[| continuous (tracesfun Pf); continuous (tracesfun Qf) |] ==> continuous (tracesfun (%f. IF b THEN Pf f ELSE Qf f))
lemma continuous_tracesfun_Parallel:
[| continuous (tracesfun Pf); continuous (tracesfun Qf) |] ==> continuous (tracesfun (%f. Pf f |[X]| Qf f))
lemma continuous_tracesfun_Hiding:
continuous (tracesfun Pf) ==> continuous (tracesfun (%f. Pf f -- X))
lemma continuous_tracesfun_Renaming:
continuous (tracesfun Pf) ==> continuous (tracesfun (%f. Pf f [[r]]))
lemma continuous_tracesfun_Seq_compo:
[| continuous (tracesfun Pf); continuous (tracesfun Qf) |] ==> continuous (tracesfun (%f. Pf f ;; Qf f))
lemma continuous_tracesfun_Depth_rest:
continuous (tracesfun Pf) ==> continuous (tracesfun (%f. Pf f |. n))
lemma continuous_tracesfun_variable:
continuous (tracesfun (%f. f pn))
lemma continuous_tracesfun:
Pf ∈ Procfun ==> continuous (tracesfun Pf)
lemma continuous_semTfun:
Pf ∈ Procfun ==> continuous [[Pf]]Tfun
lemma continuous_tracesFun:
PF ∈ ProcFun ==> continuous (tracesFun PF)
lemma continuous_semTFun:
PF ∈ ProcFun ==> continuous [[PF]]TFun