Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F/FNF_F
theory FNF_F_sf (*-------------------------------------------*
| CSP-Prover on Isabelle2005 |
| February 2006 |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory FNF_F_sf = FNF_F_sf_hide + FNF_F_sf_par
+ FNF_F_sf_ren + FNF_F_sf_seq
+ FNF_F_sf_rest :
(*****************************************************************
1. full sequentialisation
2.
3.
*****************************************************************)
(*****************************************************************
small transformation
*****************************************************************)
consts
fsfF_Act_prefix ::
"'a => 'a proc => 'a proc" ("(1_ /->seq _)" [150,80] 80)
fsfF_Ext_pre_choice ::
"'a set => ('a => 'a proc) => 'a proc" ("(1? :_ /->seq _)" [900,80] 80)
defs
fsfF_Act_prefix_def :
"a ->seq P == (? y:{a} -> P) [+] STOP"
fsfF_Ext_pre_choice_def :
"? :A ->seq Pf == (? :A -> Pf) [+] STOP"
syntax
"@fsfF_Ext_pre_choice" :: "pttrn => 'a set => 'a proc
=> 'a proc" ("(1? _:_ /->seq _)" [900,900,80] 80)
translations
"? a:A ->seq P" == "? :A ->seq (%a. P)"
(* a -> P *)
lemma fsfF_Act_prefix_in:
"P : fsfF_proc ==> a ->seq P : fsfF_proc"
by (simp add: fsfF_Act_prefix_def fsfF_proc.intros)
lemma cspF_fsfF_Act_prefix_eqF:
"a -> P =F a ->seq P"
apply (simp add: fsfF_Act_prefix_def)
apply (rule cspF_rw_right)
apply (rule cspF_Ext_choice_unit)
apply (rule cspF_Act_prefix_step)
done
(* ? :A -> Pf *)
lemma fsfF_Ext_pre_choice_in:
"ALL a. Pf a : fsfF_proc ==> ? :A ->seq Pf : fsfF_proc"
by (simp add: fsfF_Ext_pre_choice_def fsfF_proc.intros)
lemma cspF_fsfF_Ext_pre_choice_eqF:
"? :A -> Pf =F ? :A ->seq Pf"
apply (simp add: fsfF_Ext_pre_choice_def)
apply (rule cspF_rw_right)
apply (rule cspF_Ext_choice_unit)
apply (rule cspF_reflex)
done
(* IF b THEN P ELSE Q *)
lemma fsfF_IF_in:
"[| P : fsfF_proc ; Q : fsfF_proc |]
==> (if b then P else Q) : fsfF_proc"
by (auto)
lemmas cspF_fsfF_IF_eqF = cspF_IF_split
(*===============================================================*
definition of a function for full sequentialization
*===============================================================*)
consts
fsfF :: "'a proc => 'a proc"
primrec
"fsfF(STOP) = SSTOP"
"fsfF(SKIP) = SSKIP"
"fsfF(DIV) = SDIV"
"fsfF(a -> P) = a ->seq (fsfF P)"
"fsfF(? :A -> Pf) = ? a:A ->seq (fsfF (Pf a))"
"fsfF(P [+] Q) = (fsfF P) [+]seq (fsfF Q)"
"fsfF(P |~| Q) = (fsfF P) |~|seq (fsfF Q)"
"fsfF(!! :C .. Pf) = !! c:C ..seq fsfF (Pf c)"
"fsfF(IF b THEN P ELSE Q) = (if b then fsfF(P) else fsfF(Q))"
"fsfF(P |[X]| Q) = (fsfF P) |[X]|seq (fsfF Q)"
"fsfF(P -- X) = (fsfF P) --seq X"
"fsfF(P [[r]]) = (fsfF P) [[r]]seq"
"fsfF(P ;; Q) = (fsfF P) ;;seq (fsfF Q)"
"fsfF(P |. n) = (fsfF P) |.seq n"
(*===============================================================*
theorem --- fsfF P is fullly sequentialized ---
*===============================================================*)
theorem fsfF_in: "fsfF P : fsfF_proc"
apply (induct_tac P)
apply (simp_all)
apply (simp add: fsfF_Act_prefix_in)
apply (simp add: fsfF_Ext_pre_choice_in)
apply (simp add: fsfF_Ext_choice_in)
apply (simp add: fsfF_Int_choice_in)
apply (simp add: fsfF_Rep_int_choice_in)
apply (simp add: fsfF_Parallel_in)
apply (simp add: fsfF_Hiding_in)
apply (simp add: fsfF_Renaming_in)
apply (simp add: fsfF_Seq_compo_in)
apply (simp add: fsfF_Depth_rest_in)
done
(*===============================================================*
theorem --- fsfF P is equal to P based on F ---
*===============================================================*)
theorem cspF_fsfF_eqF: "P =F fsfF P"
apply (induct_tac P)
apply (simp add: cspF_SSTOP_eqF)
apply (simp add: cspF_SSKIP_eqF)
apply (simp add: cspF_SDIV_eqF)
(* Act_prefix *)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (simp)
apply (assumption)
apply (simp add: cspF_fsfF_Act_prefix_eqF)
(* Ext_pre_choice *)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (simp)
apply (erule rev_all1E)
apply (drule_tac x="a" in spec)
apply (assumption)
apply (simp add: cspF_fsfF_Ext_pre_choice_eqF)
(* Ext_choice *)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (assumption)
apply (assumption)
apply (simp add: cspF_fsfF_Ext_choice_eqF)
(* Int_choice *)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (assumption)
apply (assumption)
apply (simp add: cspF_fsfF_Int_choice_eqF)
(* Rep_int_choice *)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (simp)
apply (erule rev_all1E)
apply (drule_tac x="c" in spec)
apply (assumption)
apply (simp add: cspF_fsfF_Rep_int_choice_eqF)
(* IF *)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (simp)
apply (assumption)
apply (assumption)
apply (simp add: cspF_fsfF_IF_eqF)
(* Parallel *)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (simp)
apply (assumption)
apply (assumption)
apply (simp add: cspF_fsfF_Parallel_eqF)
(* Hiding *)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (simp)
apply (assumption)
apply (simp add: cspF_fsfF_Hiding_eqF)
(* Renaming *)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (simp)
apply (assumption)
apply (simp add: cspF_fsfF_Renaming_eqF)
(* Seq_compo *)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (assumption)
apply (assumption)
apply (simp add: cspF_fsfF_Seq_compo_eqF)
(* Depth_rest *)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (simp)
apply (assumption)
apply (simp)
apply (simp add: cspF_fsfF_Depth_rest_eqF)
done
end
lemma fsfF_Act_prefix_in:
P ∈ fsfF_proc ==> a ->seq P ∈ fsfF_proc
lemma cspF_fsfF_Act_prefix_eqF:
a -> P =F a ->seq P
lemma fsfF_Ext_pre_choice_in:
∀a. Pf a ∈ fsfF_proc ==> ? :A ->seq Pf ∈ fsfF_proc
lemma cspF_fsfF_Ext_pre_choice_eqF:
? :A -> Pf =F ? :A ->seq Pf
lemma fsfF_IF_in:
[| P ∈ fsfF_proc; Q ∈ fsfF_proc |] ==> (if b then P else Q) ∈ fsfF_proc
lemmas cspF_fsfF_IF_eqF:
IF b THEN P ELSE Q =F (if b then P else Q)
lemmas cspF_fsfF_IF_eqF:
IF b THEN P ELSE Q =F (if b then P else Q)
theorem fsfF_in:
fsfF P ∈ fsfF_proc
theorem cspF_fsfF_eqF:
P =F fsfF P