Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F/FNF_F
theory FNF_F_sf_par (*-------------------------------------------*
| CSP-Prover on Isabelle2005 |
| Februaru 2006 |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory FNF_F_sf_par = FNF_F_sf_induct + FNF_F_sf_ext:
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare disj_not1 [simp del]
(* The following simplification rules are deleted in this theory file *)
(* P (if Q then x else y) = ((Q --> P x) & (~ Q --> P y)) *)
declare split_if [split del]
(*****************************************************************
1. full sequentialization for Parallel (P1 |[X]| DIV)
2. full sequentialization for Parallel (P1 |[X]| SKIP)
3. full sequentialization for Parallel (P1 |[X]| P2)
*****************************************************************)
(*============================================================*
| |
| Parallel (P |[X]| DIV) |
| |
*============================================================*)
consts
Pfun_Parallel_DIV :: "'a set => ('a proc => 'a proc)"
SP_step_Parallel_DIV ::
"'a set => ('a set => ('a => 'a proc) => 'a proc => ('a => 'a proc) => 'a proc)"
fsfF_Parallel_DIV :: "'a set => 'a proc => 'a proc"
defs
Pfun_Parallel_DIV_def :
"Pfun_Parallel_DIV X == (%P1. P1 |[X]| DIV)"
SP_step_Parallel_DIV_def :
"SP_step_Parallel_DIV X == (%A1 Pf1 Q1 SPf.
(? :(A1-X) -> SPf) [+] DIV)"
fsfF_Parallel_DIV_def :
"fsfF_Parallel_DIV X == (%P1.
(fsfF_induct1 (Pfun_Parallel_DIV X)
(SP_step_Parallel_DIV X) P1))"
(*------------------------------------------------------------*
| in fsfF_proc |
*------------------------------------------------------------*)
lemma fsfF_Parallel_DIV_in:
"P1 : fsfF_proc
==> fsfF_Parallel_DIV X P1 : fsfF_proc"
apply (simp add: fsfF_Parallel_DIV_def)
apply (rule fsfF_induct1_in)
apply (simp_all add: SP_step_Parallel_DIV_def
fsfF_proc.intros)
done
(*------------------------------------------------------------*
| syntactical transformation to fsfF |
*------------------------------------------------------------*)
lemma cspF_fsfF_Parallel_DIV_eqF:
"P1 |[X]| DIV =F fsfF_Parallel_DIV X P1"
apply (simp add: fsfF_Parallel_DIV_def)
apply (rule cspF_rw_right)
apply (rule cspF_fsfF_induct1_eqF[THEN cspF_sym])
apply (simp_all add: Pfun_Parallel_DIV_def
SP_step_Parallel_DIV_def)
apply (rule cspF_Dist_nonempty, simp)
apply (rule cspF_rw_left)
apply (rule cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice)
apply (simp)
apply (rule cspF_rw_left)
apply (rule cspF_SKIP_DIV)
apply (simp)
apply (rule cspF_decompo | rule cspF_reflex | simp)+
done
(*============================================================*
| |
| Parallel (P |[X]| SKIP) |
| |
*============================================================*)
consts
Pfun_Parallel_SKIP :: "'a set => ('a proc => 'a proc)"
SP_step_Parallel_SKIP ::
"'a set => ('a set => ('a => 'a proc) => 'a proc => ('a => 'a proc) => 'a proc)"
fsfF_Parallel_SKIP :: "'a set => 'a proc => 'a proc"
defs
Pfun_Parallel_SKIP_def :
"Pfun_Parallel_SKIP X == (%P1. P1 |[X]| SKIP)"
SP_step_Parallel_SKIP_def :
"SP_step_Parallel_SKIP X == (%A1 Pf1 Q1 SPf.
(? :(A1-X) -> SPf) [+] Q1)"
fsfF_Parallel_SKIP_def :
"fsfF_Parallel_SKIP X == (%P1.
(fsfF_induct1 (Pfun_Parallel_SKIP X)
(SP_step_Parallel_SKIP X) P1))"
(*------------------------------------------------------------*
| in fsfF_proc |
*------------------------------------------------------------*)
lemma fsfF_Parallel_SKIP_in:
"P1 : fsfF_proc
==> fsfF_Parallel_SKIP X P1 : fsfF_proc"
apply (simp add: fsfF_Parallel_SKIP_def)
apply (rule fsfF_induct1_in)
apply (simp_all add: SP_step_Parallel_SKIP_def
fsfF_proc.intros)
done
(*------------------------------------------------------------*
| syntactical transformation to fsfF |
*------------------------------------------------------------*)
lemma cspF_fsfF_Parallel_SKIP_eqF:
"P1 |[X]| SKIP =F fsfF_Parallel_SKIP X P1"
apply (simp add: fsfF_Parallel_SKIP_def)
apply (rule cspF_rw_right)
apply (rule cspF_fsfF_induct1_eqF[THEN cspF_sym])
apply (simp_all add: Pfun_Parallel_SKIP_def
SP_step_Parallel_SKIP_def)
apply (rule cspF_Dist_nonempty, simp)
apply (rule cspF_rw_left)
apply (rule cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice)
apply (simp)
apply (simp)
apply (rule cspF_decompo | rule cspF_reflex | simp)+
done
(*============================================================*
| |
| Parallel (P |[X]| SKIP or DIV) |
| |
*============================================================*)
consts
fsfF_Parallel_SKIP_DIV :: "'a set => 'a proc => 'a proc => 'a proc"
defs
fsfF_Parallel_SKIP_DIV_def :
"fsfF_Parallel_SKIP_DIV X P1 P2 ==
if (P2 = SKIP) then fsfF_Parallel_SKIP X P1
else if (P2 = DIV) then fsfF_Parallel_DIV X P1
else (P1 |[X]| P2)"
(*------------------------------------------------------------*
| in fsfF_proc |
*------------------------------------------------------------*)
lemma fsfF_Parallel_SKIP_DIV_in:
"[| P1 : fsfF_proc ; P2 = SKIP | P2 = DIV |]
==> fsfF_Parallel_SKIP_DIV X P1 P2 : fsfF_proc"
apply (simp add: fsfF_Parallel_SKIP_DIV_def)
apply (erule disjE)
apply (simp add: fsfF_Parallel_SKIP_in)
apply (simp add: fsfF_Parallel_DIV_in)
done
(*------------------------------------------------------------*
| syntactical transformation to fsfF |
*------------------------------------------------------------*)
lemma cspF_fsfF_Parallel_SKIP_DIV_eqF:
"P1 |[X]| P2 =F fsfF_Parallel_SKIP_DIV X P1 P2"
apply (simp add: fsfF_Parallel_SKIP_DIV_def)
apply (simp split: split_if)
apply (intro conjI impI)
apply (simp add: cspF_fsfF_Parallel_DIV_eqF)
apply (simp add: cspF_fsfF_Parallel_SKIP_eqF)
done
lemmas cspF_fsfF_Parallel_SKIP_DIV_eqF_sym =
cspF_fsfF_Parallel_SKIP_DIV_eqF[THEN cspF_sym]
(*============================================================*
| |
| Genaralized Parallel (P |[X]| Q) |
| |
*============================================================*)
consts
Pfun_Parallel :: "'a set => ('a proc => 'a proc => 'a proc)"
SP_step_Parallel ::
"'a set =>
('a set => ('a => 'a proc) => 'a proc => 'a set => ('a => 'a proc) => 'a proc =>
('a => 'a proc) => ('a => 'a proc) => ('a => 'a proc) => 'a proc)"
fsfF_Parallel :: "'a proc => 'a set => 'a proc => 'a proc"
("(1_ /|[_]|seq _)" [76,0,77] 76)
defs
Pfun_Parallel_def :
"Pfun_Parallel X == (%P1 P2. P1 |[X]| P2)"
SP_step_Parallel_def :
"SP_step_Parallel X == (%A1 Pf1 Q1 A2 Pf2 Q2 SPf SPf1 SPf2.
(if (Q1 = STOP & Q2 = STOP) then
((? a:((X Int A1 Int A2) Un (A1 - X) Un (A2 - X))
-> (if (a : X) then (SPf a)
else if (a : A1 & a : A2)
then ((SPf1 a) |~|seq (SPf2 a))
else if (a : A1) then (SPf1 a)
else (SPf2 a))) [+] STOP)
else if (Q1 = STOP) then
(((? a:((X Int A1 Int A2) Un (A1 - X) Un (A2 - X))
-> (if (a : X) then (SPf a)
else if (a : A1 & a : A2)
then ((SPf1 a) |~|seq (SPf2 a))
else if (a : A1) then (SPf1 a)
else (SPf2 a))) [+] STOP)
[>seq
(fsfF_Parallel_SKIP_DIV X (((? :A1 -> Pf1) [+] Q1)) Q2))
else if (Q2 = STOP) then
(((? a:((X Int A1 Int A2) Un (A1 - X) Un (A2 - X))
-> (if (a : X) then (SPf a)
else if (a : A1 & a : A2)
then ((SPf1 a) |~|seq (SPf2 a))
else if (a : A1) then (SPf1 a)
else (SPf2 a))) [+] STOP)
[>seq
(fsfF_Parallel_SKIP_DIV X (((? :A2 -> Pf2) [+] Q2)) Q1))
else
(((? a:((X Int A1 Int A2) Un (A1 - X) Un (A2 - X))
-> (if (a : X) then (SPf a)
else if (a : A1 & a : A2)
then ((SPf1 a) |~|seq (SPf2 a))
else if (a : A1) then (SPf1 a)
else (SPf2 a))) [+] STOP)
[>seq
((fsfF_Parallel_SKIP_DIV X
(((? :A2 -> Pf2) [+] Q2)) Q1) |~|seq
(fsfF_Parallel_SKIP_DIV X
(((? :A1 -> Pf1) [+] Q1)) Q2)))))"
defs
fsfF_Parallel_def :
"P1 |[X]|seq P2 ==
(fsfF_induct2 (Pfun_Parallel X) (SP_step_Parallel X) P1 P2)"
(*------------------------------------------------------------*
| in fsfF_proc |
*------------------------------------------------------------*)
lemma fsfF_Parallel_in_lm:
"[| ALL a:A1. Pf1 a : fsfF_proc;
ALL a:A2. Pf2 a : fsfF_proc;
ALL a:A1 Int A2. SPf a : fsfF_proc;
ALL a:A1. SPf1 a : fsfF_proc;
ALL a:A2. SPf2 a : fsfF_proc;
Q1 = SKIP | Q1 = DIV | Q1 = STOP; Q2 = SKIP | Q2 = DIV | Q2 = STOP |]
==> SP_step_Parallel X A1 Pf1 Q1 A2 Pf2 Q2 SPf SPf1 SPf2 : fsfF_proc"
apply (simp_all add: SP_step_Parallel_def)
(* Q1 = STOP & Q2 = STOP *)
apply (case_tac "Q1 = STOP & Q2 = STOP")
apply (simp)
apply (rule fsfF_proc.intros)
apply (rule ballI)
apply (simp split: split_if)
apply (intro conjI ballI impI)
apply (simp_all)
apply (simp add: fsfF_Int_choice_in)
(* Q1 = STOP *)
apply (subgoal_tac "~ (Q1 = STOP & Q2 = STOP)")
apply (simp (no_asm_simp))
apply (case_tac "Q1 = STOP")
apply (simp)
apply (rule fsfF_Timeout_in)
apply (rule fsfF_proc.intros)
apply (rule ballI)
apply (simp split: split_if)
apply (intro conjI ballI impI)
apply (simp_all)
apply (simp add: fsfF_Int_choice_in)
apply (rule fsfF_Parallel_SKIP_DIV_in)
apply (simp add: fsfF_proc.intros)
apply (simp)
(* Q2 = STOP *)
apply (case_tac "Q2 = STOP")
apply (simp)
apply (rule fsfF_Timeout_in)
apply (rule fsfF_proc.intros)
apply (rule ballI)
apply (simp split: split_if)
apply (intro conjI ballI impI)
apply (simp_all)
apply (simp add: fsfF_Int_choice_in)
apply (rule fsfF_Parallel_SKIP_DIV_in)
apply (simp add: fsfF_proc.intros)
apply (simp)
(* Q1 = SKIP | DIV , Q2 = SKIP | DIV *)
apply (rule fsfF_Timeout_in)
apply (rule fsfF_proc.intros)
apply (rule ballI)
apply (simp split: split_if)
apply (intro conjI ballI impI)
apply (simp_all)
apply (simp add: fsfF_Int_choice_in)
apply (rule fsfF_Int_choice_in)
apply (rule fsfF_Parallel_SKIP_DIV_in)
apply (simp add: fsfF_proc.intros)
apply (simp)
apply (rule fsfF_Parallel_SKIP_DIV_in)
apply (simp add: fsfF_proc.intros)
apply (simp)
done
(*------------------------------------*
| in |
*------------------------------------*)
lemma fsfF_Parallel_in:
"[| P1 : fsfF_proc ; P2 : fsfF_proc |]
==> P1 |[X]|seq P2 : fsfF_proc"
apply (simp add: fsfF_Parallel_def)
apply (rule fsfF_induct2_in)
apply (simp_all)
apply (simp add: fsfF_Parallel_in_lm)
done
(*------------------------------------------------------------*
| syntactical transformation to fsfF |
*------------------------------------------------------------*)
lemma cspF_fsfF_Parallel_eqF:
"P1 |[X]| P2 =F P1 |[X]|seq P2"
apply (simp add: fsfF_Parallel_def)
apply (rule cspF_rw_right)
apply (rule cspF_fsfF_induct2_eqF[THEN cspF_sym])
apply (simp_all add: Pfun_Parallel_def)
apply (rule cspF_Dist_nonempty, simp)
apply (rule cspF_Dist_nonempty, simp)
apply (simp add: SP_step_Parallel_def)
(* Q1 = STOP & Q2 = STOP *)
apply (case_tac "Q1 = STOP & Q2 = STOP")
apply (simp)
apply (rule cspF_rw_right)
apply (rule cspF_unit)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_unit)
apply (rule cspF_unit)
apply (rule cspF_rw_left)
apply (rule cspF_step)
apply (rule cspF_decompo)
apply (simp)
apply (simp split: split_if)
apply (intro conjI impI)
apply (simp)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_rw_right)
apply (rule cspF_fsfF_Int_choice_eqF[THEN cspF_sym])
apply (rule cspF_decompo)
apply (rule cspF_decompo)
apply (simp)
apply (simp)
apply (rule cspF_rw_right)
apply (rule cspF_unit)
apply (rule cspF_reflex)
apply (rule cspF_decompo)
apply (simp)
apply (simp)
apply (rule cspF_rw_right)
apply (rule cspF_unit)
apply (rule cspF_reflex)
apply (rule cspF_reflex)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_rw_right)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_reflex)
apply (rule cspF_unit)
apply (rule cspF_reflex)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_rw_right)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_unit)
apply (rule cspF_reflex)
apply (rule cspF_reflex)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_rw_right)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_unit)
apply (rule cspF_reflex)
apply (rule cspF_reflex)
(* Q1 = STOP *)
apply (simp (no_asm_simp))
apply (case_tac "Q1 = STOP")
apply (simp)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_Ext_choice_unit)
apply (rule cspF_reflex)
apply (rule cspF_rw_left)
apply (rule cspF_SKIP_or_DIV_resolve)
apply (fast)
apply (rule cspF_rw_right)
apply (rule cspF_fsfF_Timeout_eqF[THEN cspF_sym])
apply (rule cspF_decompo)
apply (rule cspF_decompo)
apply (rule cspF_rw_right)
apply (rule cspF_unit)
apply (rule cspF_decompo)
apply (simp)
(* IF --> if *)
apply (simp split: split_if)
apply (intro conjI impI)
apply (simp)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_rw_right)
apply (rule cspF_fsfF_Int_choice_eqF[THEN cspF_sym])
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_rw_right)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_unit)
apply (rule cspF_reflex)
apply (rule cspF_reflex)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_reflex)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_rw_right)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_unit)
apply (rule cspF_reflex)
apply (rule cspF_reflex)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_rw_right)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_unit)
apply (rule cspF_reflex)
apply (rule cspF_reflex)
apply (rule cspF_reflex)
apply (rule cspF_rw_right)
apply (rule cspF_fsfF_Parallel_SKIP_DIV_eqF[THEN cspF_sym])
apply (rule cspF_rw_right)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_unit)
apply (rule cspF_reflex)
apply (rule cspF_reflex)
(* Q2 = STOP *)
apply (case_tac "Q2 = STOP")
apply (simp)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_reflex)
apply (rule cspF_unit)
apply (rule cspF_rw_left)
apply (rule cspF_SKIP_or_DIV_resolve)
apply (simp)
apply (rule cspF_rw_right)
apply (rule cspF_fsfF_Timeout_eqF[THEN cspF_sym])
apply (rule cspF_decompo)
apply (rule cspF_decompo)
apply (rule cspF_rw_right)
apply (rule cspF_unit)
apply (rule cspF_decompo)
apply (simp)
(* IF --> if *)
apply (simp split: split_if)
apply (intro conjI impI)
apply (simp)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_rw_right)
apply (rule cspF_fsfF_Int_choice_eqF[THEN cspF_sym])
apply (rule cspF_decompo)
apply (rule cspF_rw_right)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_reflex)
apply (rule cspF_unit)
apply (rule cspF_reflex)
apply (rule cspF_reflex)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_rw_right)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_reflex)
apply (rule cspF_unit)
apply (rule cspF_reflex)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_reflex)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_reflex)
apply (rule cspF_reflex)
apply (rule cspF_rw_right)
apply (rule cspF_fsfF_Parallel_SKIP_DIV_eqF[THEN cspF_sym])
apply (rule cspF_rw_right)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_unit)
apply (rule cspF_reflex)
apply (rule cspF_commut)
(* DIV or SKIP *)
apply (simp)
apply (rule cspF_rw_left)
apply (rule cspF_SKIP_or_DIV_resolve)
apply (simp)
apply (simp)
apply (rule cspF_rw_right)
apply (rule cspF_fsfF_Timeout_eqF[THEN cspF_sym])
apply (rule cspF_decompo)
apply (rule cspF_decompo)
apply (rule cspF_rw_right)
apply (rule cspF_unit)
apply (rule cspF_decompo)
apply (simp)
(* IF --> if *)
apply (simp split: split_if)
apply (intro conjI impI)
apply (simp)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_rw_right)
apply (rule cspF_fsfF_Int_choice_eqF[THEN cspF_sym])
apply (rule cspF_reflex)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_reflex)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_reflex)
apply (rule cspF_rw_left, rule cspF_IF)+
apply (rule cspF_reflex)
apply (rule cspF_reflex)
apply (rule cspF_rw_right)
apply (rule cspF_fsfF_Int_choice_eqF[THEN cspF_sym])
apply (rule cspF_decompo)
apply (rule cspF_rw_right)
apply (rule cspF_fsfF_Parallel_SKIP_DIV_eqF[THEN cspF_sym])
apply (rule cspF_commut)
apply (rule cspF_rw_right)
apply (rule cspF_fsfF_Parallel_SKIP_DIV_eqF[THEN cspF_sym])
apply (rule cspF_reflex)
(* congruence *)
apply (simp add: SP_step_Parallel_def)
apply (simp split: split_if)
apply (intro conjI impI)
apply (rule cspF_decompo, simp)
apply (rule cspF_decompo, simp)
apply (simp split: split_if)
apply (intro conjI impI)
apply (simp_all)
apply (rule cspF_rw_left, rule cspF_fsfF_Int_choice_eqF[THEN cspF_sym])
apply (rule cspF_rw_right, rule cspF_fsfF_Int_choice_eqF[THEN cspF_sym])
apply (rule cspF_decompo)
apply (simp_all)
apply (rule cspF_rw_left, rule cspF_fsfF_Timeout_eqF[THEN cspF_sym])
apply (rule cspF_rw_right, rule cspF_fsfF_Timeout_eqF[THEN cspF_sym])
apply (rule cspF_Timeout_cong)
apply (rule cspF_decompo, simp)
apply (rule cspF_decompo, simp)
apply (simp split: split_if)
apply (intro conjI impI)
apply (simp_all)
apply (rule cspF_rw_left, rule cspF_fsfF_Int_choice_eqF[THEN cspF_sym])
apply (rule cspF_rw_right, rule cspF_fsfF_Int_choice_eqF[THEN cspF_sym])
apply (rule cspF_decompo)
apply (simp_all)
apply (rule cspF_rw_left, rule cspF_fsfF_Timeout_eqF[THEN cspF_sym])
apply (rule cspF_rw_right, rule cspF_fsfF_Timeout_eqF[THEN cspF_sym])
apply (rule cspF_Timeout_cong)
apply (rule cspF_decompo, simp)
apply (rule cspF_decompo, simp)
apply (simp split: split_if)
apply (intro conjI impI)
apply (simp_all)
apply (rule cspF_rw_left, rule cspF_fsfF_Int_choice_eqF[THEN cspF_sym])
apply (rule cspF_rw_right, rule cspF_fsfF_Int_choice_eqF[THEN cspF_sym])
apply (rule cspF_decompo)
apply (simp_all)
apply (rule cspF_rw_left, rule cspF_fsfF_Timeout_eqF[THEN cspF_sym])
apply (rule cspF_rw_right, rule cspF_fsfF_Timeout_eqF[THEN cspF_sym])
apply (rule cspF_Timeout_cong)
apply (rule cspF_decompo, simp)
apply (rule cspF_decompo, simp)
apply (simp split: split_if)
apply (intro conjI impI)
apply (simp_all)
apply (rule cspF_rw_left, rule cspF_fsfF_Int_choice_eqF[THEN cspF_sym])
apply (rule cspF_rw_right, rule cspF_fsfF_Int_choice_eqF[THEN cspF_sym])
apply (rule cspF_decompo)
apply (simp_all)
done
(****************** to add them again ******************)
declare split_if [split]
declare disj_not1 [simp]
end
lemma fsfF_Parallel_DIV_in:
P1.0 ∈ fsfF_proc ==> fsfF_Parallel_DIV X P1.0 ∈ fsfF_proc
lemma cspF_fsfF_Parallel_DIV_eqF:
P1.0 |[X]| DIV =F fsfF_Parallel_DIV X P1.0
lemma fsfF_Parallel_SKIP_in:
P1.0 ∈ fsfF_proc ==> fsfF_Parallel_SKIP X P1.0 ∈ fsfF_proc
lemma cspF_fsfF_Parallel_SKIP_eqF:
P1.0 |[X]| SKIP =F fsfF_Parallel_SKIP X P1.0
lemma fsfF_Parallel_SKIP_DIV_in:
[| P1.0 ∈ fsfF_proc; P2.0 = SKIP ∨ P2.0 = DIV |] ==> fsfF_Parallel_SKIP_DIV X P1.0 P2.0 ∈ fsfF_proc
lemma cspF_fsfF_Parallel_SKIP_DIV_eqF:
P1.0 |[X]| P2.0 =F fsfF_Parallel_SKIP_DIV X P1.0 P2.0
lemmas cspF_fsfF_Parallel_SKIP_DIV_eqF_sym:
fsfF_Parallel_SKIP_DIV X1 P1.1 P2.1 =F P1.1 |[X1]| P2.1
lemmas cspF_fsfF_Parallel_SKIP_DIV_eqF_sym:
fsfF_Parallel_SKIP_DIV X1 P1.1 P2.1 =F P1.1 |[X1]| P2.1
lemma fsfF_Parallel_in_lm:
[| ∀a∈A1.0. Pf1.0 a ∈ fsfF_proc; ∀a∈A2.0. Pf2.0 a ∈ fsfF_proc; ∀a∈A1.0 ∩ A2.0. SPf a ∈ fsfF_proc; ∀a∈A1.0. SPf1.0 a ∈ fsfF_proc; ∀a∈A2.0. SPf2.0 a ∈ fsfF_proc; Q1.0 = SKIP ∨ Q1.0 = DIV ∨ Q1.0 = STOP; Q2.0 = SKIP ∨ Q2.0 = DIV ∨ Q2.0 = STOP |] ==> SP_step_Parallel X A1.0 Pf1.0 Q1.0 A2.0 Pf2.0 Q2.0 SPf SPf1.0 SPf2.0 ∈ fsfF_proc
lemma fsfF_Parallel_in:
[| P1.0 ∈ fsfF_proc; P2.0 ∈ fsfF_proc |] ==> P1.0 |[X]|seq P2.0 ∈ fsfF_proc
lemma cspF_fsfF_Parallel_eqF:
P1.0 |[X]| P2.0 =F P1.0 |[X]|seq P2.0