Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F/FNF_F
theory FNF_F_sf_rest(*-------------------------------------------* | CSP-Prover on Isabelle2005 | | Februaru 2006 | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory FNF_F_sf_rest = FNF_F_sf_def: (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare disj_not1 [simp del] (* The following simplification rules are deleted in this theory file *) (* P (if Q then x else y) = ((Q --> P x) & (~ Q --> P y)) *) declare split_if [split del] (***************************************************************** 1. full sequentialization for Depth-restriction (P |. n) 2. 3. *****************************************************************) (*============================================================* | | | Depth_rest | | | *============================================================*) (*============================================================* | Pfun P1 P2 | *============================================================*) (*** relation ***) consts fsfF_Depth_rest_rel :: "('a proc * nat * 'a proc) set" fsfF_Depth_rest :: "'a proc => nat => 'a proc" ("(1_ /|.seq _)" [84,900] 84) inductive "fsfF_Depth_rest_rel" intros fsfF_Depth_rest_rel_zero: "(P1, 0, SDIV) : fsfF_Depth_rest_rel" fsfF_Depth_rest_rel_etc: "P1 ~: fsfF_proc ==> (P1, Suc n, P1 |. (Suc n)) : fsfF_Depth_rest_rel" fsfF_Depth_rest_rel_int: "[| ALL c. if (c:C1) then (Rf1 c, Suc n, SRf c) : fsfF_Depth_rest_rel else SRf c = DIV ; C1 ~= {} ; ALL c:C1. Rf1 c : fsfF_proc |] ==> ((!! :C1 .. Rf1), Suc n, !! c:C1 .. SRf c) : fsfF_Depth_rest_rel" fsfF_Depth_rest_rel_step: "[| ALL a. if a:A1 then (Pf1 a, n, SPf a) : fsfF_Depth_rest_rel else SPf a = DIV ; ALL a:A1. Pf1 a : fsfF_proc ; Q1 = SKIP | Q1 = DIV | Q1 = STOP |] ==> ((? :A1 -> Pf1) [+] Q1, Suc n, (? :A1 -> SPf) [+] Q1) : fsfF_Depth_rest_rel" (*** function ***) defs fsfF_Depth_rest_def: "P1 |.seq n == THE SP. (P1, n, SP) : fsfF_Depth_rest_rel" (**************************************************************** | uniquness | ****************************************************************) lemma fsfF_Depth_rest_rel_unique_in_lm: "(P1, n, SP1) : fsfF_Depth_rest_rel ==> (ALL SP2. ((P1, n, SP2) : fsfF_Depth_rest_rel --> SP1 = SP2))" apply (rule fsfF_Depth_rest_rel.induct[of P1 n SP1]) apply (simp) (* zero *) apply (intro allI impI) apply (rotate_tac -1) apply (erule fsfF_Depth_rest_rel.elims) apply (simp_all) (* etc *) apply (intro allI impI) apply (rotate_tac -1) apply (erule fsfF_Depth_rest_rel.elims) apply (simp_all) apply (simp add: fsfF_proc_int) apply (simp add: fsfF_proc_ext) (* step_int *) apply (intro allI impI) apply (rotate_tac -1) apply (erule fsfF_Depth_rest_rel.elims, simp_all) apply (elim conjE exE) apply (rotate_tac -3) apply (drule sym) apply (simp add: fsfF_proc_int) apply (simp add: expand_fun_eq) apply (intro allI) apply (drule_tac x="x" in spec)+ apply (case_tac "x : C1a") apply (simp) apply (simp) (* step *) apply (intro allI impI) apply (rotate_tac -1) apply (erule fsfF_Depth_rest_rel.elims, simp_all) apply (elim conjE exE) apply (rotate_tac -3) apply (drule sym) apply (simp add: fsfF_proc_ext) apply (simp add: expand_fun_eq) apply (rule allI) apply (drule_tac x="x" in spec)+ apply (case_tac "x : A1a") apply (simp_all) done (*-----------------------* | unique | *-----------------------*) lemma fsfF_Depth_rest_rel_unique: "[| (P1, n, SP1) : fsfF_Depth_rest_rel; (P1, n, SP2) : fsfF_Depth_rest_rel |] ==> SP1 = SP2" by (simp add: fsfF_Depth_rest_rel_unique_in_lm) lemma fsfF_Depth_rest_rel_EX1: "(EX SP. (P1, n, SP) : fsfF_Depth_rest_rel) = (EX! SP. (P1, n, SP) : fsfF_Depth_rest_rel)" apply (rule iffI) apply (erule exE) apply (rule_tac a="SP" in ex1I) apply (simp) apply (simp add: fsfF_Depth_rest_rel_unique) apply (elim ex1_implies_exE) apply (simp) done (*------------------------------------------------------------* | fsfF_Depth_rest_rel (iff) | *------------------------------------------------------------*) (* zero *) lemma fsfF_Depth_rest_rel_zero_iff: "(P1, 0, SP) : fsfF_Depth_rest_rel = (SP = SDIV)" apply (rule) apply (erule fsfF_Depth_rest_rel.elims, simp_all) apply (simp add: fsfF_Depth_rest_rel_zero) done (* etc *) lemma fsfF_Depth_rest_rel_etc_iff: "P1 ~: fsfF_proc ==> (P1, Suc n, SP) : fsfF_Depth_rest_rel = (SP = P1 |. Suc n)" apply (rule) apply (erule fsfF_Depth_rest_rel.elims, simp_all) apply (simp add: fsfF_proc_int) apply (simp add: fsfF_proc_ext) apply (simp add: fsfF_Depth_rest_rel_etc) done (* int *) lemma fsfF_Depth_rest_rel_int_iff: "[| ALL c. if (c:C1) then (Rf1 c, Suc n, SRf c) : fsfF_Depth_rest_rel else SRf c = DIV ; C1 ~= {} ; ALL c:C1. Rf1 c : fsfF_proc |] ==> ((!! :C1 .. Rf1), Suc n, SP) : fsfF_Depth_rest_rel = (SP = !! :C1 .. SRf)" apply (rule) apply (erule fsfF_Depth_rest_rel.elims, simp_all) apply (elim conjE) apply (rotate_tac -3) apply (drule sym) apply (simp add: fsfF_proc_int) apply (simp add: expand_fun_eq) apply (rule allI) apply (drule_tac x="x" in spec)+ apply (case_tac "x : C1a") apply (simp add: fsfF_Depth_rest_rel_unique) apply (simp) apply (simp add: fsfF_Depth_rest_rel_int) done (* step *) lemma fsfF_Depth_rest_rel_step_iff: "[| ALL a. if a:A1 then (Pf1 a, n, SPf a) : fsfF_Depth_rest_rel else SPf a = DIV ; ALL a:A1. Pf1 a : fsfF_proc ; Q1 = SKIP | Q1 = DIV | Q1 = STOP |] ==> ((? :A1 -> Pf1) [+] Q1, Suc n, SP) : fsfF_Depth_rest_rel = (SP = (? :A1 -> SPf) [+] Q1)" apply (rule) apply (erule fsfF_Depth_rest_rel.elims, simp_all) apply (elim conjE) apply (rotate_tac -3) apply (drule sym) apply (simp add: fsfF_proc_ext) apply (simp add: expand_fun_eq) apply (intro allI conjI) apply (elim conjE) apply (drule_tac x="x" in spec)+ apply (case_tac "x : A1a") apply (simp add: fsfF_Depth_rest_rel_unique) apply (simp) apply (simp add: fsfF_Depth_rest_rel_step) done (**************************************************************** | existency | ****************************************************************) (*** exists ***) lemma fsfF_Depth_rest_rel_exists_zero: "(EX SP. (P1, 0, SP) : fsfF_Depth_rest_rel)" apply (rule_tac x="SDIV" in exI) apply (simp add: fsfF_Depth_rest_rel.intros) done lemma fsfF_Depth_rest_rel_exists_notin: "P1 ~: fsfF_proc ==> (EX SP. (P1, n, SP) : fsfF_Depth_rest_rel)" apply (insert nat_zero_or_Suc) apply (drule_tac x="n" in spec) apply (elim disjE exE) apply (simp add: fsfF_Depth_rest_rel_exists_zero) apply (rule_tac x="P1 |. n" in exI) apply (simp add: fsfF_Depth_rest_rel.intros) done (*** in fsfF_proc ***) (********* P1 and P2 *********) lemma fsfF_Depth_rest_rel_exists_in: "P1 : fsfF_proc ==> ALL n. (EX SP. (P1, n, SP) : fsfF_Depth_rest_rel)" apply (rule fsfF_proc.induct[of P1]) apply (simp) (* int *) apply (rule allI) apply (insert nat_zero_or_Suc) apply (drule_tac x="n" in spec) apply (elim disjE exE) apply (simp add: fsfF_Depth_rest_rel_exists_zero) apply (erule dist_BALL_conjE) apply (simp add: exchange_ALL_BALL) apply (simp add: choice_BALL_EX) apply (drule_tac x="n" in spec) apply (elim exE) apply (rule_tac x="!! c:C .. (if (c : C) then f c else DIV)" in exI) apply (rule fsfF_Depth_rest_rel.intros) apply (simp split: split_if) apply (simp_all) (* ext *) apply (rule allI) apply (drule_tac x="n" in spec) apply (rotate_tac -1) apply (erule disjE) apply (simp add: fsfF_Depth_rest_rel_exists_zero) apply (elim exE) apply (erule dist_BALL_conjE) apply (simp add: exchange_ALL_BALL) apply (simp add: choice_BALL_EX) apply (drule_tac x="m" in spec) apply (elim exE) apply (rule_tac x="? a:A -> (if (a : A) then (f a) else DIV) [+] Q" in exI) apply (rule fsfF_Depth_rest_rel.intros) apply (simp split: split_if) apply (simp_all) done (*-----------------------* | exists | *-----------------------*) lemma fsfF_Depth_rest_rel_exists: "EX SP. (P1, n, SP) : fsfF_Depth_rest_rel" apply (case_tac "P1 ~: fsfF_proc") apply (simp add: fsfF_Depth_rest_rel_exists_notin) apply (simp add: fsfF_Depth_rest_rel_exists_in) done (*-----------------------* | uniquely exists | *-----------------------*) lemma fsfF_Depth_rest_rel_unique_exists: "EX! SP. (P1, n, SP) : fsfF_Depth_rest_rel" apply (simp add: fsfF_Depth_rest_rel_EX1[THEN sym]) apply (simp add: fsfF_Depth_rest_rel_exists) done (*------------------------------------------------------------* | in fsfF_proc | *------------------------------------------------------------*) lemma fsfF_Depth_rest_rel_zero_in: "(P1, 0, SP) : fsfF_Depth_rest_rel ==> SP : fsfF_proc" apply (simp add: fsfF_Depth_rest_rel_zero_iff) done lemma fsfF_Depth_rest_rel_in_lm: "P1 : fsfF_proc ==> ALL n SP. (P1, n, SP) : fsfF_Depth_rest_rel --> SP : fsfF_proc" apply (rule fsfF_proc.induct[of P1]) apply (simp) (* int *) apply (intro allI) apply (insert nat_zero_or_Suc) apply (drule_tac x="n" in spec) apply (elim disjE exE) apply (simp add: fsfF_Depth_rest_rel_zero_in) apply (intro impI) apply (simp) apply (rotate_tac -1) apply (erule fsfF_Depth_rest_rel.elims, simp_all) apply (elim conjE) apply (rotate_tac -3) apply (drule sym) apply (simp add: fsfF_proc.intros) apply (rule fsfF_proc.intros) apply (simp_all) apply (rule ballI) apply (drule_tac x="c" in spec) apply (drule_tac x="c" in bspec, simp) apply (force) (* ext *) apply (intro allI) apply (drule_tac x="n" in spec) apply (rotate_tac -1) apply (erule disjE) apply (simp add: fsfF_Depth_rest_rel_zero_in) apply (intro impI) apply (erule fsfF_Depth_rest_rel.elims, simp_all) apply (elim conjE) apply (rotate_tac -3) apply (drule sym) apply (simp add: fsfF_proc.intros) apply (rule fsfF_proc.intros) apply (simp_all) apply (rule ballI) apply (drule_tac x="a" in spec) apply (drule_tac x="a" in bspec, simp) apply (force) done (*------------------------------------* | in | *------------------------------------*) lemma fsfF_Depth_rest_rel_in: "[| P1 : fsfF_proc ; (P1, n, SP) : fsfF_Depth_rest_rel |] ==> SP : fsfF_proc" apply (insert fsfF_Depth_rest_rel_in_lm[of P1]) apply (blast) done (*------------------------------------------------------------* | syntactical transformation to fsfF | *------------------------------------------------------------*) (*** relation ***) lemma cspF_fsfF_Depth_rest_rel_eqF_zero: "(P1, 0, SP) : fsfF_Depth_rest_rel ==> P1 |. 0 =F SP" apply (simp add: fsfF_Depth_rest_rel_zero_iff) apply (rule cspF_rw_left) apply (rule cspF_Depth_rest_Zero) apply (rule cspF_SDIV_eqF) done lemma cspF_fsfF_Depth_rest_rel_eqF_notin: "[| P1 ~: fsfF_proc ; (P1, n, SP) : fsfF_Depth_rest_rel |] ==> P1 |. n =F SP" apply (insert nat_zero_or_Suc) apply (drule_tac x="n" in spec) apply (elim disjE exE) apply (simp add: cspF_fsfF_Depth_rest_rel_eqF_zero) apply (simp add: fsfF_Depth_rest_rel_etc_iff) done lemma cspF_fsfF_Depth_rest_rel_eqF_in: "P1 : fsfF_proc ==> ALL n SP. (P1, n, SP) : fsfF_Depth_rest_rel --> P1 |. n =F SP" apply (rule fsfF_proc.induct[of P1]) apply (simp) (* int *) apply (intro allI) apply (insert nat_zero_or_Suc) apply (drule_tac x="n" in spec) apply (elim disjE exE) apply (simp add: cspF_fsfF_Depth_rest_rel_eqF_zero) apply (intro impI) apply (simp) apply (rotate_tac -1) apply (erule fsfF_Depth_rest_rel.elims, simp_all) apply (elim conjE) apply (rule cspF_rw_left) apply (rule cspF_Dist) apply (rule cspF_decompo) apply (simp) apply (drule_tac x="c" in bspec, simp) apply (drule_tac x="c" in spec) apply (simp) (* ext *) apply (intro allI) apply (drule_tac x="n" in spec) apply (rotate_tac -1) apply (erule disjE) apply (simp add: cspF_fsfF_Depth_rest_rel_eqF_zero) apply (intro impI) apply (erule fsfF_Depth_rest_rel.elims, simp_all) apply (rule cspF_rw_left) apply (rule cspF_Ext_dist) apply (rule cspF_decompo) apply (rule cspF_rw_left) apply (rule cspF_step) apply (rule cspF_decompo) apply (simp) apply (simp) apply (case_tac "Q = STOP") apply (simp add: cspF_STOP_Depth_rest) apply (simp add: cspF_SKIP_or_DIV_Depth_rest) done (*------------------------------------* | eqF | *------------------------------------*) lemma cspF_fsfF_Depth_rest_rel_eqF: "(P1, n, SP) : fsfF_Depth_rest_rel ==> P1 |. n =F SP" apply (case_tac "P1 ~: fsfF_proc") apply (simp add: cspF_fsfF_Depth_rest_rel_eqF_notin) apply (simp add: cspF_fsfF_Depth_rest_rel_eqF_in) done (************************************************************* relation --> function *************************************************************) lemma fsfF_Depth_rest_in_rel: "(P1, n, P1 |.seq n) : fsfF_Depth_rest_rel" apply (simp add: fsfF_Depth_rest_def) apply (rule theI' [of "(%R. (P1, n, R) : fsfF_Depth_rest_rel)"]) apply (simp add: fsfF_Depth_rest_rel_unique_exists) done lemma fsfF_Depth_rest_from_rel: "((P1, n, SP) : fsfF_Depth_rest_rel) = (P1 |.seq n = SP)" apply (rule iffI) apply (simp add: fsfF_Depth_rest_def) apply (simp add: fsfF_Depth_rest_rel_unique_exists the1_equality) apply (drule sym) apply (simp add: fsfF_Depth_rest_in_rel) done lemma fsfF_Depth_rest_to_rel: "(P1 |.seq n = SP) = ((P1, n, SP) : fsfF_Depth_rest_rel)" by (simp add: fsfF_Depth_rest_from_rel) (************************************************************* function *************************************************************) lemma fsfF_Depth_rest_zero: "P1 |.seq 0 = SDIV" apply (simp add: fsfF_Depth_rest_to_rel) apply (simp add: fsfF_Depth_rest_rel_zero_iff) done lemma fsfF_Depth_rest_etc: "P1 ~: fsfF_proc ==> P1 |.seq (Suc n) = P1 |. (Suc n)" apply (simp add: fsfF_Depth_rest_to_rel) apply (simp add: fsfF_Depth_rest_rel_etc_iff) done lemma fsfF_Depth_rest_int: "[| C1 ~= {} ; ALL c:C1. Rf1 c : fsfF_proc |] ==> (!! :C1 .. Rf1) |.seq (Suc n) = !! c:C1 .. (if c:C1 then (Rf1 c |.seq (Suc n)) else DIV)" apply (simp add: fsfF_Depth_rest_to_rel) apply (rule fsfF_Depth_rest_rel_int) apply (simp_all) apply (simp split: split_if) apply (simp add: fsfF_Depth_rest_in_rel) done lemma fsfF_Depth_rest_step: "[| ALL a:A1. Pf1 a : fsfF_proc ; Q1 = SKIP | Q1 = DIV | Q1 = STOP |] ==> ((? :A1 -> Pf1) [+] Q1) |.seq (Suc n) = ((? a:A1 -> (if (a:A1) then (Pf1 a |.seq n) else DIV)) [+] Q1)" apply (simp add: fsfF_Depth_rest_to_rel) apply (rule fsfF_Depth_rest_rel_step) apply (simp_all) apply (simp split: split_if) apply (simp add: fsfF_Depth_rest_in_rel) done lemmas fsfF_Depth_rest = fsfF_Depth_rest_etc fsfF_Depth_rest_int fsfF_Depth_rest_step (*------------------------------------------------------------* | in fsfF_proc | *------------------------------------------------------------*) lemma fsfF_Depth_rest_in: "P1 : fsfF_proc ==> P1 |.seq n : fsfF_proc" apply (rule fsfF_Depth_rest_rel_in[of P1 n]) apply (simp_all add: fsfF_Depth_rest_in_rel) done (*------------------------------------------------------------* | syntactical transformation to fsfF | *------------------------------------------------------------*) lemma cspF_fsfF_Depth_rest_eqF: "P1 |. n =F P1 |.seq n" apply (rule cspF_fsfF_Depth_rest_rel_eqF) apply (simp add: fsfF_Depth_rest_in_rel) done (****************** to add them again ******************) declare split_if [split] declare disj_not1 [simp] end
lemma fsfF_Depth_rest_rel_unique_in_lm:
(P1.0, n, SP1.0) ∈ fsfF_Depth_rest_rel ==> ∀SP2. (P1.0, n, SP2) ∈ fsfF_Depth_rest_rel --> SP1.0 = SP2
lemma fsfF_Depth_rest_rel_unique:
[| (P1.0, n, SP1.0) ∈ fsfF_Depth_rest_rel; (P1.0, n, SP2.0) ∈ fsfF_Depth_rest_rel |] ==> SP1.0 = SP2.0
lemma fsfF_Depth_rest_rel_EX1:
(∃SP. (P1.0, n, SP) ∈ fsfF_Depth_rest_rel) = (∃!SP. (P1.0, n, SP) ∈ fsfF_Depth_rest_rel)
lemma fsfF_Depth_rest_rel_zero_iff:
((P1.0, 0, SP) ∈ fsfF_Depth_rest_rel) = (SP = SDIV)
lemma fsfF_Depth_rest_rel_etc_iff:
P1.0 ∉ fsfF_proc ==> ((P1.0, Suc n, SP) ∈ fsfF_Depth_rest_rel) = (SP = P1.0 |. Suc n)
lemma fsfF_Depth_rest_rel_int_iff:
[| ∀c. if c ∈ C1.0 then (Rf1.0 c, Suc n, SRf c) ∈ fsfF_Depth_rest_rel else SRf c = DIV; C1.0 ≠ {}; ∀c∈C1.0. Rf1.0 c ∈ fsfF_proc |] ==> ((!! :C1.0 .. Rf1.0, Suc n, SP) ∈ fsfF_Depth_rest_rel) = (SP = !! :C1.0 .. SRf)
lemma fsfF_Depth_rest_rel_step_iff:
[| ∀a. if a ∈ A1.0 then (Pf1.0 a, n, SPf a) ∈ fsfF_Depth_rest_rel else SPf a = DIV; ∀a∈A1.0. Pf1.0 a ∈ fsfF_proc; Q1.0 = SKIP ∨ Q1.0 = DIV ∨ Q1.0 = STOP |] ==> ((? :A1.0 -> Pf1.0 [+] Q1.0, Suc n, SP) ∈ fsfF_Depth_rest_rel) = (SP = ? :A1.0 -> SPf [+] Q1.0)
lemma fsfF_Depth_rest_rel_exists_zero:
∃SP. (P1.0, 0, SP) ∈ fsfF_Depth_rest_rel
lemma fsfF_Depth_rest_rel_exists_notin:
P1.0 ∉ fsfF_proc ==> ∃SP. (P1.0, n, SP) ∈ fsfF_Depth_rest_rel
lemma fsfF_Depth_rest_rel_exists_in:
P1.0 ∈ fsfF_proc ==> ∀n. ∃SP. (P1.0, n, SP) ∈ fsfF_Depth_rest_rel
lemma fsfF_Depth_rest_rel_exists:
∃SP. (P1.0, n, SP) ∈ fsfF_Depth_rest_rel
lemma fsfF_Depth_rest_rel_unique_exists:
∃!SP. (P1.0, n, SP) ∈ fsfF_Depth_rest_rel
lemma fsfF_Depth_rest_rel_zero_in:
(P1.0, 0, SP) ∈ fsfF_Depth_rest_rel ==> SP ∈ fsfF_proc
lemma fsfF_Depth_rest_rel_in_lm:
P1.0 ∈ fsfF_proc ==> ∀n SP. (P1.0, n, SP) ∈ fsfF_Depth_rest_rel --> SP ∈ fsfF_proc
lemma fsfF_Depth_rest_rel_in:
[| P1.0 ∈ fsfF_proc; (P1.0, n, SP) ∈ fsfF_Depth_rest_rel |] ==> SP ∈ fsfF_proc
lemma cspF_fsfF_Depth_rest_rel_eqF_zero:
(P1.0, 0, SP) ∈ fsfF_Depth_rest_rel ==> P1.0 |. 0 =F SP
lemma cspF_fsfF_Depth_rest_rel_eqF_notin:
[| P1.0 ∉ fsfF_proc; (P1.0, n, SP) ∈ fsfF_Depth_rest_rel |] ==> P1.0 |. n =F SP
lemma cspF_fsfF_Depth_rest_rel_eqF_in:
P1.0 ∈ fsfF_proc ==> ∀n SP. (P1.0, n, SP) ∈ fsfF_Depth_rest_rel --> P1.0 |. n =F SP
lemma cspF_fsfF_Depth_rest_rel_eqF:
(P1.0, n, SP) ∈ fsfF_Depth_rest_rel ==> P1.0 |. n =F SP
lemma fsfF_Depth_rest_in_rel:
(P1.0, n, P1.0 |.seq n) ∈ fsfF_Depth_rest_rel
lemma fsfF_Depth_rest_from_rel:
((P1.0, n, SP) ∈ fsfF_Depth_rest_rel) = (P1.0 |.seq n = SP)
lemma fsfF_Depth_rest_to_rel:
(P1.0 |.seq n = SP) = ((P1.0, n, SP) ∈ fsfF_Depth_rest_rel)
lemma fsfF_Depth_rest_zero:
P1.0 |.seq 0 = SDIV
lemma fsfF_Depth_rest_etc:
P1.0 ∉ fsfF_proc ==> P1.0 |.seq Suc n = P1.0 |. Suc n
lemma fsfF_Depth_rest_int:
[| C1.0 ≠ {}; ∀c∈C1.0. Rf1.0 c ∈ fsfF_proc |] ==> (!! :C1.0 .. Rf1.0) |.seq Suc n = !! c:C1.0 .. (if c ∈ C1.0 then Rf1.0 c |.seq Suc n else DIV)
lemma fsfF_Depth_rest_step:
[| ∀a∈A1.0. Pf1.0 a ∈ fsfF_proc; Q1.0 = SKIP ∨ Q1.0 = DIV ∨ Q1.0 = STOP |] ==> (? :A1.0 -> Pf1.0 [+] Q1.0) |.seq Suc n = ? a:A1.0 -> (if a ∈ A1.0 then Pf1.0 a |.seq n else DIV) [+] Q1.0
lemmas fsfF_Depth_rest:
P1.0 ∉ fsfF_proc ==> P1.0 |.seq Suc n = P1.0 |. Suc n
[| C1.0 ≠ {}; ∀c∈C1.0. Rf1.0 c ∈ fsfF_proc |] ==> (!! :C1.0 .. Rf1.0) |.seq Suc n = !! c:C1.0 .. (if c ∈ C1.0 then Rf1.0 c |.seq Suc n else DIV)
[| ∀a∈A1.0. Pf1.0 a ∈ fsfF_proc; Q1.0 = SKIP ∨ Q1.0 = DIV ∨ Q1.0 = STOP |] ==> (? :A1.0 -> Pf1.0 [+] Q1.0) |.seq Suc n = ? a:A1.0 -> (if a ∈ A1.0 then Pf1.0 a |.seq n else DIV) [+] Q1.0
lemmas fsfF_Depth_rest:
P1.0 ∉ fsfF_proc ==> P1.0 |.seq Suc n = P1.0 |. Suc n
[| C1.0 ≠ {}; ∀c∈C1.0. Rf1.0 c ∈ fsfF_proc |] ==> (!! :C1.0 .. Rf1.0) |.seq Suc n = !! c:C1.0 .. (if c ∈ C1.0 then Rf1.0 c |.seq Suc n else DIV)
[| ∀a∈A1.0. Pf1.0 a ∈ fsfF_proc; Q1.0 = SKIP ∨ Q1.0 = DIV ∨ Q1.0 = STOP |] ==> (? :A1.0 -> Pf1.0 [+] Q1.0) |.seq Suc n = ? a:A1.0 -> (if a ∈ A1.0 then Pf1.0 a |.seq n else DIV) [+] Q1.0
lemma fsfF_Depth_rest_in:
P1.0 ∈ fsfF_proc ==> P1.0 |.seq n ∈ fsfF_proc
lemma cspF_fsfF_Depth_rest_eqF:
P1.0 |. n =F P1.0 |.seq n