Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F/FNF_F
theory FNF_F_nf(*-------------------------------------------* | CSP-Prover on Isabelle2005 | | February 2006 | | April 2006 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory FNF_F_nf = FNF_F_nf_int + FNF_F_sf : (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare disj_not1 [simp del] (* The following simplification rules are deleted in this theory file *) (* P (if Q then x else y) = ((Q --> P x) & (~ Q --> P y)) *) declare split_if [split del] (***************************************************************** 1. full normalizing 2. 3. *****************************************************************) (*==================================================================* | fsfF --> fnfF | *==================================================================*) consts fnfF_fsfF_rel :: "(nat * 'a proc * 'a proc) set" fnfF_fsfF :: "nat => 'a proc => 'a proc" fnfF :: "nat => 'a proc => 'a proc" XfnfF :: "'a proc => 'a proc" inductive "fnfF_fsfF_rel" intros fnfF_fsfF_rel_zero: "(0, P, NDIV) : fnfF_fsfF_rel" fnfF_fsfF_rel_etc: "P ~: fsfF_proc ==> (Suc n, P, P |. Suc n) : fnfF_fsfF_rel" fnfF_fsfF_rel_int: "[| ALL c. if (c:C) then (Suc n, SPf c, NPf c) : fnfF_fsfF_rel else NPf c = DIV ; C ~= {} ; ALL c:C. SPf c : fsfF_proc |] ==> (Suc n, (!! :C .. SPf), !! c:C ..[Suc n] NPf c) : fnfF_fsfF_rel" fnfF_fsfF_rel_step: "[| ALL a. if a:A then (n, SPf a, NPf a) : fnfF_fsfF_rel else NPf a = DIV ; ALL a:A. SPf a : fsfF_proc ; Q = SKIP | Q = DIV | Q = STOP |] ==> (Suc n, (? :A -> SPf) [+] Q, ((? :A -> NPf) [+] (if (Q = SKIP) then SKIP else DIV)) |~| (!set Y:(if Q = STOP then {A} else {}) .. (? a:Y -> DIV))) : fnfF_fsfF_rel" (*** function ***) defs fnfF_fsfF_def: "fnfF_fsfF n SP == THE NP. (n, SP, NP) : fnfF_fsfF_rel" fnfF_def : "fnfF == (%n P. fnfF_fsfF n (fsfF P))" XfnfF_def : "XfnfF == (%P. !nat n .. (fnfF n P))" (**************************************************************** | uniquness | ****************************************************************) lemma fnfF_fsfF_rel_unique_in_lm: "(n, SP, NP1) : fnfF_fsfF_rel ==> (ALL NP2. ((n, SP, NP2) : fnfF_fsfF_rel --> NP1 = NP2))" apply (rule fnfF_fsfF_rel.induct[of n SP NP1]) apply (simp) (* zero *) apply (intro allI impI) apply (rotate_tac -1) apply (erule fnfF_fsfF_rel.elims) apply (simp_all) (* etc *) apply (intro allI impI) apply (rotate_tac -1) apply (erule fnfF_fsfF_rel.elims) apply (simp_all) apply (simp add: fsfF_proc_int) apply (simp add: fsfF_proc_ext) (* int *) apply (intro allI impI) apply (rotate_tac -1) apply (erule fnfF_fsfF_rel.elims, simp_all) apply (elim conjE exE) apply (rotate_tac -2) apply (drule sym) apply (simp add: fsfF_proc_int) apply (subgoal_tac "NPf = NPfa", simp) apply (simp add: expand_fun_eq) apply (intro allI) apply (drule_tac x="x" in spec)+ apply (case_tac "x : Ca") apply (simp) apply (simp) (* step *) apply (intro allI impI) apply (rotate_tac -1) apply (erule fnfF_fsfF_rel.elims, simp_all) apply (elim conjE exE) apply (rotate_tac -2) apply (drule sym) apply (simp add: fsfF_proc_ext) apply (rule conjI) apply (subgoal_tac "NPf = NPfa", simp) apply (simp add: expand_fun_eq) apply (intro allI) apply (drule_tac x="x" in spec)+ apply (case_tac "x : Aa") apply (simp) apply (simp) apply (simp split: split_if) done (*-----------------------* | unique | *-----------------------*) lemma fnfF_fsfF_rel_unique: "[| (n, SP, NP1) : fnfF_fsfF_rel; (n, SP, NP2) : fnfF_fsfF_rel |] ==> NP1 = NP2" by (simp add: fnfF_fsfF_rel_unique_in_lm) lemma fnfF_fsfF_rel_EX1: "(EX NP. (n, SP, NP) : fnfF_fsfF_rel) = (EX! NP. (n, SP, NP) : fnfF_fsfF_rel)" apply (rule iffI) apply (erule exE) apply (rule_tac a="NP" in ex1I) apply (simp) apply (simp add: fnfF_fsfF_rel_unique) apply (elim ex1_implies_exE) apply (simp) done (*------------------------------------------------------------* | fnfF_fsfF_rel (iff) | *------------------------------------------------------------*) (* zero *) lemma fnfF_fsfF_rel_zero_iff: "(0, SP, NP) : fnfF_fsfF_rel = (NP = NDIV)" apply (rule) apply (erule fnfF_fsfF_rel.elims, simp_all) apply (simp add: fnfF_fsfF_rel_zero) done (* etc *) lemma fnfF_fsfF_rel_etc_iff: "P ~: fsfF_proc ==> (Suc n, P, NP) : fnfF_fsfF_rel = (NP = P |. Suc n)" apply (rule) apply (erule fnfF_fsfF_rel.elims, simp_all) apply (simp add: fsfF_proc_int) apply (simp add: fsfF_proc_ext) apply (simp add: fnfF_fsfF_rel_etc) done (* int *) lemma fnfF_fsfF_rel_int_iff: "[| ALL c. if (c:C) then (Suc n, SPf c, NPf c) : fnfF_fsfF_rel else NPf c = DIV ; C ~= {} ; ALL c:C. SPf c : fsfF_proc |] ==> (Suc n, (!! :C .. SPf), NP) : fnfF_fsfF_rel = (NP = !! c:C ..[Suc n] NPf c)" apply (rule) apply (erule fnfF_fsfF_rel.elims, simp_all) apply (elim conjE) apply (rotate_tac -2) apply (drule sym) apply (simp add: fsfF_proc_int) apply (subgoal_tac "NPfa = NPf", simp) apply (simp add: expand_fun_eq) apply (rule allI) apply (drule_tac x="x" in spec)+ apply (case_tac "x : Ca") apply (simp add: fnfF_fsfF_rel_unique) apply (simp) apply (simp add: fnfF_fsfF_rel_int) done (* step *) lemma fnfF_fsfF_rel_step_iff: "[| ALL a. if a:A then (n, SPf a, NPf a) : fnfF_fsfF_rel else NPf a = DIV ; ALL a:A. SPf a : fsfF_proc ; Q = SKIP | Q = DIV | Q = STOP |] ==> (Suc n, (? :A -> SPf) [+] Q, NP) : fnfF_fsfF_rel = (NP = ((? :A -> NPf) [+] (if (Q = SKIP) then SKIP else DIV)) |~| (!set Y:(if Q = STOP then {A} else {}) .. (? a:Y -> DIV)))" apply (rule) apply (erule fnfF_fsfF_rel.elims, simp_all) apply (elim conjE) apply (rotate_tac -2) apply (drule sym) apply (simp add: fsfF_proc_ext) apply (rule conjI) apply (subgoal_tac "NPfa = NPf", simp) apply (simp add: expand_fun_eq) apply (intro allI conjI) apply (elim conjE) apply (drule_tac x="x" in spec)+ apply (case_tac "x : Aa") apply (simp add: fnfF_fsfF_rel_unique) apply (simp) apply (simp split: split_if) apply (simp add: fnfF_fsfF_rel_step) done (**************************************************************** | existency | ****************************************************************) (*** exists ***) lemma fnfF_fsfF_rel_exists_zero: "(EX NP. (0, SP, NP) : fnfF_fsfF_rel)" apply (rule_tac x="NDIV" in exI) apply (simp add: fnfF_fsfF_rel.intros) done lemma fnfF_fsfF_rel_exists_notin: "P ~: fsfF_proc ==> (EX NP. (n, P, NP) : fnfF_fsfF_rel)" apply (insert nat_zero_or_Suc) apply (drule_tac x="n" in spec) apply (elim disjE exE) apply (simp add: fnfF_fsfF_rel_exists_zero) apply (rule_tac x="P |. n" in exI) apply (simp add: fnfF_fsfF_rel.intros) done (*** in fsfF_proc ***) lemma fnfF_fsfF_rel_exists_in: "SP : fsfF_proc ==> ALL n. (EX NP. (n, SP, NP) : fnfF_fsfF_rel)" apply (rule fsfF_proc.induct[of SP]) apply (simp) (* int *) apply (rule allI) apply (insert nat_zero_or_Suc) apply (drule_tac x="n" in spec) apply (elim disjE exE) apply (simp add: fnfF_fsfF_rel_exists_zero) apply (erule dist_BALL_conjE) apply (simp add: exchange_ALL_BALL) apply (simp add: choice_BALL_EX) apply (drule_tac x="n" in spec) apply (elim exE) apply (rule_tac x="!! c:C ..[Suc m] (if (c : C) then f c else DIV)" in exI) apply (rule fnfF_fsfF_rel.intros) apply (simp split: split_if) apply (simp_all) (* ext *) apply (rule allI) apply (drule_tac x="n" in spec) apply (rotate_tac -1) apply (erule disjE) apply (simp add: fnfF_fsfF_rel_exists_zero) apply (elim exE) apply (erule dist_BALL_conjE) apply (simp add: exchange_ALL_BALL) apply (simp add: choice_BALL_EX) apply (drule_tac x="m" in spec) apply (elim exE) apply (rule_tac x= "((? a:A -> (if (a : A) then f a else DIV)) [+] (if (Q = SKIP) then SKIP else DIV)) |~| (!set Y:(if Q = STOP then {A} else {}) .. (? a:Y -> DIV))" in exI) apply (rule fnfF_fsfF_rel.intros) apply (simp split: split_if) apply (simp_all) done (*-----------------------* | exists | *-----------------------*) lemma fnfF_fsfF_rel_exists: "EX NP. (n, SP, NP) : fnfF_fsfF_rel" apply (case_tac "SP ~: fsfF_proc") apply (simp add: fnfF_fsfF_rel_exists_notin) apply (simp add: fnfF_fsfF_rel_exists_in) done (*-----------------------* | uniquely exists | *-----------------------*) lemma fnfF_fsfF_rel_unique_exists: "EX! NP. (n, SP, NP) : fnfF_fsfF_rel" apply (simp add: fnfF_fsfF_rel_EX1[THEN sym]) apply (simp add: fnfF_fsfF_rel_exists) done (*------------------------------------------------------------* | in fsfF_proc | *------------------------------------------------------------*) lemma fnfF_fsfF_rel_zero_in: "(0, SP, NP) : fnfF_fsfF_rel ==> NP : fnfF_proc" apply (simp add: fnfF_fsfF_rel_zero_iff) done lemma fnfF_fsfF_rel_in_lm: "SP : fsfF_proc ==> ALL n NP. (n, SP, NP) : fnfF_fsfF_rel --> NP : fnfF_proc" apply (rule fsfF_proc.induct[of SP]) apply (simp) (* int *) apply (intro allI) apply (insert nat_zero_or_Suc) apply (drule_tac x="n" in spec) apply (elim disjE exE) apply (simp add: fnfF_fsfF_rel_zero_in) apply (intro impI) apply (simp) apply (rotate_tac -1) apply (erule fnfF_fsfF_rel.elims, simp_all) apply (elim conjE) apply (rotate_tac -2) apply (drule sym) apply (simp add: fsfF_proc.intros) apply (rule fnfF_Rep_int_choice_in) apply (rule ballI) apply (drule_tac x="c" in spec, simp) (* ext *) apply (intro allI) apply (drule_tac x="n" in spec) apply (rotate_tac -1) apply (erule disjE) apply (simp add: fnfF_fsfF_rel_zero_in) apply (intro impI) apply (erule fnfF_fsfF_rel.elims, simp_all) apply (elim conjE) apply (rotate_tac -2) apply (drule sym) apply (simp add: fsfF_proc.intros) apply (rule fnfF_proc.intros) apply (simp split: split_if) apply (intro allI impI) apply (drule_tac x="a" in spec, simp) apply (simp add: fnfF_set_condition_def) apply (intro allI impI) apply (simp split: split_if) apply (elim conjE bexE) apply (case_tac "Qa = STOP") apply (simp) apply (simp) apply (force) apply (force) done (*------------------------------------* | in | *------------------------------------*) lemma fnfF_fsfF_rel_in: "[| SP : fsfF_proc ; (n, SP, NP) : fnfF_fsfF_rel |] ==> NP : fnfF_proc" apply (insert fnfF_fsfF_rel_in_lm[of SP]) apply (blast) done (*------------------------------------------------------------* | syntactical transformation to fsfF | *------------------------------------------------------------*) (*** relation ***) lemma cspF_fnfF_fsfF_rel_eqF_zero: "(0, P, NP) : fnfF_fsfF_rel ==> P |. 0 =F NP" apply (simp add: fnfF_fsfF_rel_zero_iff) apply (rule cspF_rw_left) apply (rule cspF_Depth_rest_Zero) apply (rule cspF_NDIV_eqF) done lemma cspF_fnfF_fsfF_rel_eqF_notin: "[| P ~: fsfF_proc ; (n, P, NP) : fnfF_fsfF_rel |] ==> P |. n =F NP" apply (insert nat_zero_or_Suc) apply (drule_tac x="n" in spec) apply (elim disjE exE) apply (simp add: cspF_fnfF_fsfF_rel_eqF_zero) apply (simp add: fnfF_fsfF_rel_etc_iff) done lemma cspF_fnfF_fsfF_rel_eqF_in: "SP : fsfF_proc ==> ALL n NP. (n, SP, NP) : fnfF_fsfF_rel --> SP |. n =F NP" apply (rule fsfF_proc.induct[of SP]) apply (simp) (* int *) apply (intro allI) apply (insert nat_zero_or_Suc) apply (drule_tac x="n" in spec) apply (elim disjE exE) apply (simp add: cspF_fnfF_fsfF_rel_eqF_zero) apply (intro impI) apply (simp) apply (rotate_tac -1) apply (erule fnfF_fsfF_rel.elims, simp_all) apply (elim conjE) apply (rule cspF_rw_right) apply (rule cspF_fnfF_Rep_int_choice_eqF[THEN cspF_sym]) apply (rule cspF_rw_left) apply (rule cspF_Dist) apply (rule cspF_rw_right) apply (rule cspF_Dist) apply (rule cspF_decompo) apply (simp) apply (drule_tac x="c" in bspec, simp) apply (drule_tac x="c" in spec) apply (simp) apply (drule_tac x="Suc na" in spec) apply (drule_tac x="NPf c" in spec) apply (simp) apply (rule cspF_rw_left) apply (rule cspF_Depth_rest_n[THEN cspF_sym]) apply (rule cspF_decompo) apply (simp) apply (simp) (* ext *) apply (intro allI) apply (drule_tac x="n" in spec) apply (rotate_tac -1) apply (erule disjE) apply (simp add: cspF_fnfF_fsfF_rel_eqF_zero) apply (intro impI) apply (erule fnfF_fsfF_rel.elims, simp_all) apply (rule cspF_rw_left) apply (rule cspF_Ext_dist) apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (rule cspF_step) apply (subgoal_tac "Qa |. Suc na =F Qa") apply (simp) apply (case_tac "Q = STOP") apply (simp add: cspF_STOP_Depth_rest) apply (simp add: cspF_SKIP_or_DIV_Depth_rest) apply (case_tac "Qa = STOP") apply (simp) (* STOP *) apply (rule cspF_rw_left) apply (rule cspF_unit) apply (rule cspF_rw_left) apply (rule cspF_input_DIV) apply (rule cspF_decompo) apply (rule cspF_decompo) apply (rule cspF_decompo) apply (simp) apply (drule_tac x="a" in bspec, simp) apply (drule_tac x="na" in spec) apply (drule_tac x="NPf a" in spec) apply (simp) apply (simp) apply (rule cspF_rw_right) apply (rule cspF_Rep_int_choice_singleton) apply (rule cspF_reflex) (* SKIP | DIV *) apply (simp) apply (rule cspF_rw_right) apply (rule cspF_decompo) apply (rule cspF_reflex) apply (rule cspF_Rep_int_choice_DIV) apply (rule cspF_rw_right) apply (rule cspF_unit) apply (rule cspF_decompo) apply (rule cspF_decompo) apply (simp) apply (drule_tac x="a" in bspec, simp) apply (drule_tac x="na" in spec) apply (drule_tac x="NPf a" in spec) apply (simp) apply (force) done (*------------------------------------* | eqF | *------------------------------------*) lemma cspF_fnfF_fsfF_rel_eqF: "(n, SP, NP) : fnfF_fsfF_rel ==> SP |. n =F NP" apply (case_tac "SP ~: fsfF_proc") apply (simp add: cspF_fnfF_fsfF_rel_eqF_notin) apply (simp add: cspF_fnfF_fsfF_rel_eqF_in) done (************************************************************* relation --> function *************************************************************) lemma fnfF_fsfF_in_rel: "(n, SP, fnfF_fsfF n SP) : fnfF_fsfF_rel" apply (simp add: fnfF_fsfF_def) apply (rule theI' [of "(%NP. (n, SP, NP) : fnfF_fsfF_rel)"]) apply (simp add: fnfF_fsfF_rel_unique_exists) done lemma fnfF_fsfF_from_rel: "((n, SP, NP) : fnfF_fsfF_rel) = (fnfF_fsfF n SP = NP)" apply (rule iffI) apply (simp add: fnfF_fsfF_def) apply (simp add: fnfF_fsfF_rel_unique_exists the1_equality) apply (drule sym) apply (simp add: fnfF_fsfF_in_rel) done lemma fnfF_fsfF_to_rel: "(fnfF_fsfF n SP = NP) = ((n, SP, NP) : fnfF_fsfF_rel)" by (simp add: fnfF_fsfF_from_rel) (************************************************************* function *************************************************************) lemma fnfF_fsfF_zero: "fnfF_fsfF 0 SP = NDIV" apply (simp add: fnfF_fsfF_to_rel) apply (simp add: fnfF_fsfF_rel_zero_iff) done lemma fnfF_fsfF_etc: "P ~: fsfF_proc ==> fnfF_fsfF (Suc n) P = P |. (Suc n)" apply (simp add: fnfF_fsfF_to_rel) apply (simp add: fnfF_fsfF_rel_etc_iff) done lemma fnfF_fsfF_int: "[| C ~= {} ; ALL c:C. SPf c : fsfF_proc |] ==> fnfF_fsfF (Suc n) (!! :C .. SPf) = !! c:C ..[Suc n] (if c:C then (fnfF_fsfF (Suc n) (SPf c)) else DIV)" apply (simp add: fnfF_fsfF_to_rel) apply (rule fnfF_fsfF_rel_int) apply (simp_all) apply (simp split: split_if) apply (simp add: fnfF_fsfF_in_rel) done lemma fnfF_fsfF_step: "[| ALL a:A. SPf a : fsfF_proc ; Q = SKIP | Q = DIV | Q = STOP |] ==> fnfF_fsfF (Suc n) ((? :A -> SPf) [+] Q) = ((? a:A -> (if a:A then (fnfF_fsfF n (SPf a)) else DIV)) [+] (if (Q = SKIP) then SKIP else DIV)) |~| (!set Y:(if Q = STOP then {A} else {}) .. (? a:Y -> DIV))" apply (simp add: fnfF_fsfF_to_rel) apply (rule fnfF_fsfF_rel_step) apply (simp_all) apply (simp split: split_if) apply (simp add: fnfF_fsfF_in_rel) done lemmas fnfF_fsfF = fnfF_fsfF_etc fnfF_fsfF_int fnfF_fsfF_step (*------------------------------------------------------------* | in fsfF_proc | *------------------------------------------------------------*) lemma fnfF_fsfF_in: "SP : fsfF_proc ==> fnfF_fsfF n SP : fnfF_proc" apply (rule fnfF_fsfF_rel_in[of SP n]) apply (simp_all add: fnfF_fsfF_in_rel) done (*------------------------------------------------------------* | syntactical transformation to fsfF | *------------------------------------------------------------*) lemma cspF_fnfF_fsfF_eqF: "SP |. n =F fnfF_fsfF n SP" apply (rule cspF_fnfF_fsfF_rel_eqF) apply (simp add: fnfF_fsfF_in_rel) done (*===============================================================* theorem --- fnfF P is a (restricted) full normal form --- *===============================================================*) theorem fnfF_in: "fnfF n P : fnfF_proc" apply (simp add: fnfF_def) apply (simp add: fnfF_fsfF_in fsfF_in) done (*===============================================================* theorem --- fnfF P is equal to P based on F --- *===============================================================*) theorem cspF_fnfF_eqF: "P |. n =F fnfF n P" apply (simp add: fnfF_def) apply (rule cspF_rw_right) apply (rule cspF_fnfF_fsfF_eqF[THEN cspF_sym]) apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (simp) apply (rule cspF_fsfF_eqF) apply (rule cspF_reflex) done (*------------------------* | auxiliary laws | *------------------------*) lemma cspF_fnfF_eqF_Depth_rest: "(fnfF n P) |. n =F fnfF n P" apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (simp) apply (rule cspF_fnfF_eqF[THEN cspF_sym]) apply (rule cspF_rw_left) apply (rule cspF_Depth_rest_min) apply (simp) apply (rule cspF_fnfF_eqF) done (*===============================================================* theorem --- XfnfF P is a full normal form --- *===============================================================*) theorem XfnfF_in: "XfnfF P : XfnfF_proc" apply (simp add: XfnfF_def) apply (simp add: XfnfF_proc_def) apply (rule_tac x="(%n. fnfF n P)" in exI) apply (simp) apply (simp add: fnfF_in) apply (rule allI) apply (rule cspF_rw_right) apply (rule cspF_decompo) apply (simp) apply (rule cspF_decompo) apply (simp) apply (rule cspF_fnfF_eqF[THEN cspF_sym]) apply (rule cspF_rw_left) apply (rule cspF_fnfF_eqF[THEN cspF_sym]) apply (rule cspF_decompo) apply (simp) apply (rule cspF_nat_Depth_rest) done (*===============================================================* theorem --- XfnfF P is equal to P based on F --- *===============================================================*) theorem cspF_XfnfF_eqF: "P =F XfnfF P" apply (simp add: XfnfF_def) apply (rule cspF_rw_right) apply (rule cspF_decompo) apply (simp) apply (rule cspF_fnfF_eqF[THEN cspF_sym]) apply (rule cspF_nat_Depth_rest) done (****************** to add them again ******************) declare split_if [split] declare disj_not1 [simp] end
lemma fnfF_fsfF_rel_unique_in_lm:
(n, SP, NP1.0) ∈ fnfF_fsfF_rel ==> ∀NP2. (n, SP, NP2) ∈ fnfF_fsfF_rel --> NP1.0 = NP2
lemma fnfF_fsfF_rel_unique:
[| (n, SP, NP1.0) ∈ fnfF_fsfF_rel; (n, SP, NP2.0) ∈ fnfF_fsfF_rel |] ==> NP1.0 = NP2.0
lemma fnfF_fsfF_rel_EX1:
(∃NP. (n, SP, NP) ∈ fnfF_fsfF_rel) = (∃!NP. (n, SP, NP) ∈ fnfF_fsfF_rel)
lemma fnfF_fsfF_rel_zero_iff:
((0, SP, NP) ∈ fnfF_fsfF_rel) = (NP = NDIV)
lemma fnfF_fsfF_rel_etc_iff:
P ∉ fsfF_proc ==> ((Suc n, P, NP) ∈ fnfF_fsfF_rel) = (NP = P |. Suc n)
lemma fnfF_fsfF_rel_int_iff:
[| ∀c. if c ∈ C then (Suc n, SPf c, NPf c) ∈ fnfF_fsfF_rel else NPf c = DIV; C ≠ {}; ∀c∈C. SPf c ∈ fsfF_proc |] ==> ((Suc n, !! :C .. SPf, NP) ∈ fnfF_fsfF_rel) = (NP = !! :C ..[Suc n] NPf)
lemma fnfF_fsfF_rel_step_iff:
[| ∀a. if a ∈ A then (n, SPf a, NPf a) ∈ fnfF_fsfF_rel else NPf a = DIV; ∀a∈A. SPf a ∈ fsfF_proc; Q = SKIP ∨ Q = DIV ∨ Q = STOP |] ==> ((Suc n, ? :A -> SPf [+] Q, NP) ∈ fnfF_fsfF_rel) = (NP = ? :A -> NPf [+] (if Q = SKIP then SKIP else DIV) |~| !set Y:(if Q = STOP then {A} else {}) .. ? a:Y -> DIV)
lemma fnfF_fsfF_rel_exists_zero:
∃NP. (0, SP, NP) ∈ fnfF_fsfF_rel
lemma fnfF_fsfF_rel_exists_notin:
P ∉ fsfF_proc ==> ∃NP. (n, P, NP) ∈ fnfF_fsfF_rel
lemma fnfF_fsfF_rel_exists_in:
SP ∈ fsfF_proc ==> ∀n. ∃NP. (n, SP, NP) ∈ fnfF_fsfF_rel
lemma fnfF_fsfF_rel_exists:
∃NP. (n, SP, NP) ∈ fnfF_fsfF_rel
lemma fnfF_fsfF_rel_unique_exists:
∃!NP. (n, SP, NP) ∈ fnfF_fsfF_rel
lemma fnfF_fsfF_rel_zero_in:
(0, SP, NP) ∈ fnfF_fsfF_rel ==> NP ∈ fnfF_proc
lemma fnfF_fsfF_rel_in_lm:
SP ∈ fsfF_proc ==> ∀n NP. (n, SP, NP) ∈ fnfF_fsfF_rel --> NP ∈ fnfF_proc
lemma fnfF_fsfF_rel_in:
[| SP ∈ fsfF_proc; (n, SP, NP) ∈ fnfF_fsfF_rel |] ==> NP ∈ fnfF_proc
lemma cspF_fnfF_fsfF_rel_eqF_zero:
(0, P, NP) ∈ fnfF_fsfF_rel ==> P |. 0 =F NP
lemma cspF_fnfF_fsfF_rel_eqF_notin:
[| P ∉ fsfF_proc; (n, P, NP) ∈ fnfF_fsfF_rel |] ==> P |. n =F NP
lemma cspF_fnfF_fsfF_rel_eqF_in:
SP ∈ fsfF_proc ==> ∀n NP. (n, SP, NP) ∈ fnfF_fsfF_rel --> SP |. n =F NP
lemma cspF_fnfF_fsfF_rel_eqF:
(n, SP, NP) ∈ fnfF_fsfF_rel ==> SP |. n =F NP
lemma fnfF_fsfF_in_rel:
(n, SP, fnfF_fsfF n SP) ∈ fnfF_fsfF_rel
lemma fnfF_fsfF_from_rel:
((n, SP, NP) ∈ fnfF_fsfF_rel) = (fnfF_fsfF n SP = NP)
lemma fnfF_fsfF_to_rel:
(fnfF_fsfF n SP = NP) = ((n, SP, NP) ∈ fnfF_fsfF_rel)
lemma fnfF_fsfF_zero:
fnfF_fsfF 0 SP = NDIV
lemma fnfF_fsfF_etc:
P ∉ fsfF_proc ==> fnfF_fsfF (Suc n) P = P |. Suc n
lemma fnfF_fsfF_int:
[| C ≠ {}; ∀c∈C. SPf c ∈ fsfF_proc |] ==> fnfF_fsfF (Suc n) (!! :C .. SPf) = !! c:C ..[Suc n] (if c ∈ C then fnfF_fsfF (Suc n) (SPf c) else DIV)
lemma fnfF_fsfF_step:
[| ∀a∈A. SPf a ∈ fsfF_proc; Q = SKIP ∨ Q = DIV ∨ Q = STOP |] ==> fnfF_fsfF (Suc n) (? :A -> SPf [+] Q) = ? a:A -> (if a ∈ A then fnfF_fsfF n (SPf a) else DIV) [+] (if Q = SKIP then SKIP else DIV) |~| !set Y:(if Q = STOP then {A} else {}) .. ? a:Y -> DIV
lemmas fnfF_fsfF:
P ∉ fsfF_proc ==> fnfF_fsfF (Suc n) P = P |. Suc n
[| C ≠ {}; ∀c∈C. SPf c ∈ fsfF_proc |] ==> fnfF_fsfF (Suc n) (!! :C .. SPf) = !! c:C ..[Suc n] (if c ∈ C then fnfF_fsfF (Suc n) (SPf c) else DIV)
[| ∀a∈A. SPf a ∈ fsfF_proc; Q = SKIP ∨ Q = DIV ∨ Q = STOP |] ==> fnfF_fsfF (Suc n) (? :A -> SPf [+] Q) = ? a:A -> (if a ∈ A then fnfF_fsfF n (SPf a) else DIV) [+] (if Q = SKIP then SKIP else DIV) |~| !set Y:(if Q = STOP then {A} else {}) .. ? a:Y -> DIV
lemmas fnfF_fsfF:
P ∉ fsfF_proc ==> fnfF_fsfF (Suc n) P = P |. Suc n
[| C ≠ {}; ∀c∈C. SPf c ∈ fsfF_proc |] ==> fnfF_fsfF (Suc n) (!! :C .. SPf) = !! c:C ..[Suc n] (if c ∈ C then fnfF_fsfF (Suc n) (SPf c) else DIV)
[| ∀a∈A. SPf a ∈ fsfF_proc; Q = SKIP ∨ Q = DIV ∨ Q = STOP |] ==> fnfF_fsfF (Suc n) (? :A -> SPf [+] Q) = ? a:A -> (if a ∈ A then fnfF_fsfF n (SPf a) else DIV) [+] (if Q = SKIP then SKIP else DIV) |~| !set Y:(if Q = STOP then {A} else {}) .. ? a:Y -> DIV
lemma fnfF_fsfF_in:
SP ∈ fsfF_proc ==> fnfF_fsfF n SP ∈ fnfF_proc
lemma cspF_fnfF_fsfF_eqF:
SP |. n =F fnfF_fsfF n SP
theorem fnfF_in:
fnfF n P ∈ fnfF_proc
theorem cspF_fnfF_eqF:
P |. n =F fnfF n P
lemma cspF_fnfF_eqF_Depth_rest:
fnfF n P |. n =F fnfF n P
theorem XfnfF_in:
XfnfF P ∈ XfnfF_proc
theorem cspF_XfnfF_eqF:
P =F XfnfF P