Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F/FNF_F
theory FNF_F_nf_int (*-------------------------------------------*
| CSP-Prover on Isabelle2005 |
| February 2006 |
| April 2006 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory FNF_F_nf_int = FNF_F_nf_def:
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare disj_not1 [simp del]
(* The following simplification rules are deleted in this theory file *)
(* P (if Q then x else y) = ((Q --> P x) & (~ Q --> P y)) *)
declare split_if [split del]
(*****************************************************************
1. full sequentialisation for Rep_int_choice
2.
3.
*****************************************************************)
(*============================================================*
| |
| Rep_int_choice |
| |
*============================================================*)
consts
fnfF_Rep_int_choice_step ::
"'a selector set =>
('a selector => 'a set) =>
('a selector => 'a set set) =>
('a => 'a proc) =>
('a selector => 'a proc) => 'a proc"
fnfF_Rep_int_choice ::
"nat => 'a selector set => ('a selector => 'a proc) => 'a proc"
defs
fnfF_Rep_int_choice_step_def:
"fnfF_Rep_int_choice_step == (%X Af Ysf Pf Qf.
((? :(Union {Af x |x. x:X}) -> Pf)
[+] (if (EX x:X. Qf x = SKIP) then SKIP else DIV))
|~| !set Y:(fnfF_set_completion (Union {Af x |x. x:X})
(Union {Ysf x |x. x : X})) .. (? a:Y -> DIV))"
primrec
"fnfF_Rep_int_choice 0 = (%X SPf. NDIV)"
"fnfF_Rep_int_choice (Suc n) = (%C SPf.
if (ALL c:C. SPf c : fnfF_proc)
then
fnfF_Rep_int_choice_step C
(%c. (fnfF_A (SPf c)))
(%c. (fnfF_Ys (SPf c)))
(%a. (if a:Union {fnfF_A (SPf c) |c. c : C}
then fnfF_Rep_int_choice n {c : C. a : (fnfF_A (SPf c))}
(%c. (fnfF_Pf (SPf c) a))
else DIV))
(%c. (fnfF_Q (SPf c)))
else
((!! :C .. SPf) |. Suc n))"
syntax
"_fnfF_Rep_int_choice" ::
"'a selector set => nat => ('a selector => 'a proc) => 'a proc"
("(1!! :_ ..[_] /_)" [900,0,68] 68)
"@fnfF_Rep_int_choice"::
"pttrn => ('a selector) set => nat => 'a proc => 'a proc"
("(1!! _:_ ..[_] /_)" [900,900,0,68] 68)
translations
"!! :C ..[n] SPf" == "fnfF_Rep_int_choice n C SPf"
"!! c:C ..[n] P" == "!! :C ..[n] (%c. P)"
(*** for convenience ***)
consts
fnfF_Rep_int_choice_fun :: "('b => ('a selector))
=> 'b set => nat => ('b => 'a proc) => 'a proc"
("(1!!<_> :_ ..[_] /_)" [0,900,0,68] 68)
defs
fnfF_Rep_int_choice_fun_def :
"!!<f> :X ..[n] Pf == !! :(f ` X) ..[n] (%x. (Pf ((inv f) x)))"
syntax
"@fnfF_Rep_int_choice_fun"::
"('b => ('a selector)) => pttrn => 'b set => nat => 'a proc => 'a proc"
("(1!!<_> _:_ ..[_] /_)" [0,900,900,0,68] 68)
translations
"!!<f> x:X ..[n] P" == "!!<f> :X ..[n] (%x. P)"
syntax
"@fnfF_Rep_int_choice_fun_set" :: "('a set) set => nat => ('a set => 'a proc) => 'a proc"
("(1!set :_ ..[_] /_)" [900,0,68] 68)
"@fnfF_Rep_int_choice_fun_nat" :: "nat set => nat => (nat => 'a proc) => 'a proc"
("(1!nat :_ ..[_] /_)" [900,0,68] 68)
translations
"!set :Xs ..[n] Pf" == "!!<sel_set> :Xs ..[n] Pf"
"!nat :N ..[n] Pf" == "!!<sel_nat> :N ..[n] Pf"
syntax
"@fnfF_Rep_int_choice_set" ::
"pttrn => ('a set) set => nat => ('a set => 'a proc) => 'a proc"
("(1!set _:_ ..[_] /_)" [900,900,0,68] 68)
"@fnfF_Rep_int_choice_nat" ::
"pttrn => nat set => nat => (nat => 'a proc) => 'a proc"
("(1!nat _:_ ..[_] /_)" [900,900,0,68] 68)
translations
"!set X:Xs ..[n] P" == "!set :Xs ..[n] (%X. P)"
"!nat m:N ..[n] P" == "!nat :N ..[n] (%m. P)"
(* com *)
consts
fnfF_Rep_int_choice_com :: "'a set => nat => ('a => 'a proc) => 'a proc"
("(1! :_ ..[_] /_)" [900,0,68] 68)
defs
fnfF_Rep_int_choice_com_def:
"! :A ..[n] Pf == !set X:{{a} |a. a : A} ..[n] Pf (contents(X))"
syntax
"@fnfF_Rep_int_choice_com" ::
"pttrn => 'a set => nat => ('a => 'a proc) => 'a proc"
("(1! _:_ ..[_] /_)" [900,900,0,68] 68)
translations
"! x:X ..[n] P" == "! :X ..[n] (%x. P)"
declare fnfF_Rep_int_choice.simps [simp del]
(*===========================================================*
| in fnfF_rest |
*===========================================================*)
lemma fnfF_Rep_int_choice_in_lm:
"ALL C SPf.
(ALL c:C. SPf c : fnfF_proc) -->
!! :C ..[n] SPf : fnfF_proc"
apply (induct_tac n)
apply (simp add: fnfF_Rep_int_choice.simps)
apply (intro impI allI)
apply (simp add: fnfF_Rep_int_choice.simps)
apply (simp add: fnfF_Rep_int_choice_step_def)
apply (rule fnfF_proc.intros)
(* set *)
apply (rule allI)
apply (simp)
apply (case_tac "EX x. (EX xa. x = fnfF_A (SPf xa) & xa : C) & a : x")
apply (simp)
apply (drule_tac x="{c : C. a : fnfF_A (SPf c)}" in spec)
apply (drule_tac x="(%c. fnfF_Pf (SPf c) a)" in spec)
apply (drule mp)
apply (rule ballI)
apply (simp)
apply (elim conjE exE bexE)
apply (simp)
apply (rule fnfF_Pf_A)
apply (simp)
apply (simp)
apply (simp)
apply (simp (no_asm_simp))
apply (simp)
apply (rule fnfF_set_completion_Union_subset)
apply (rule subsetI)
apply (simp)
apply (elim conjE exE bexE)
apply (simp)
apply (drule_tac x="xa" in bspec, simp)
apply (erule fnfF_proc.elims)
apply (simp)
apply (rule_tac x="fnfF_A (SPf xa)" in exI)
apply (simp)
apply (rule conjI)
apply (rule_tac x="xa" in exI)
apply (simp)
apply (auto)
apply (case_tac "EX x:C. fnfF_Q (SPf x) = SKIP")
apply (simp_all)
done
(*------------------------------------*
| in |
*------------------------------------*)
lemma fnfF_Rep_int_choice_in:
"(ALL c:C. SPf c : fnfF_proc) ==>
!! :C ..[n] SPf : fnfF_proc"
apply (simp add: fnfF_Rep_int_choice_in_lm)
done
(*------------------------------------------------------------*
| syntactical transformation to fsfF |
*------------------------------------------------------------*)
(*-----------------------------------------*
| convenient lemma for subexpresions |
*-----------------------------------------*)
lemma fnfF_Rep_int_choice_step_subexp:
"[| ALL a:(Union {Af2 c |c. c:C}). Pf1 a =F Pf2 a ;
ALL c:C. Af1 c = Af2 c ;
ALL c:C. Ysf1 c = Ysf2 c ;
ALL c:C. Qf1 c = Qf2 c ;
ALL c:C. Union (Ysf2 c) <= (Af2 c) |]
==>
fnfF_Rep_int_choice_step C Af1 Ysf1 Pf1 Qf1
=F fnfF_Rep_int_choice_step C Af2 Ysf2 Pf2 Qf2"
apply (simp add: fnfF_Rep_int_choice_step_def)
apply (rule cspF_decompo)
apply (rule cspF_decompo)
apply (rule cspF_decompo)
(* 1 *)
apply (subgoal_tac
"{Af1 c |c. c : C} = {Af2 c |c. c : C}", simp)
apply (blast)
(* 2 *)
apply (simp)
apply (elim conjE exE)
apply (simp)
apply (drule_tac x="Af2 xa" in spec)
apply (drule mp)
apply (rule_tac x="xa" in exI)
apply (simp)
apply (simp)
(* 3 *)
apply (simp)
(* 4 *)
apply (rule cspF_decompo)
apply (subgoal_tac
"{Af1 c |c. c : C} = {Af2 c |c. c : C}")
apply (subgoal_tac
"{Ysf1 c |c. c : C} = {Ysf2 c |c. c : C}")
apply (simp)
apply (erule rem_asmE)
apply (blast)
apply (erule rem_asmE)
apply (blast)
apply (simp)
done
(*------------------------------------*
| one step equality |
*------------------------------------*)
lemma cspF_fnfF_Rep_int_choice_one_step:
"[| ALL c:C. Union (Ysf c) <= (Af c) ;
ALL c:C. Qf c = SKIP | Qf c = DIV |] ==>
!! c:C .. (? :(Af c) -> Pff c [+] Qf c
|~| !set Y:Ysf c .. ? a:Y -> DIV)
=F
fnfF_Rep_int_choice_step C Af Ysf
(%a. (!! c:{c : C. a : Af c} .. Pff c a)) Qf"
apply (rule cspF_rw_left)
apply (rule cspF_dist)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (rule cspF_Rep_int_choice_Ext_Dist)
apply (simp)
apply (rule cspF_Rep_int_choice_set_DIV)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (rule cspF_decompo)
apply (rule cspF_Rep_int_choice_input_set)
apply (rule cspF_SKIP_DIV_Rep_int_choice)
apply (force)
apply (rule cspF_reflex)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (rule cspF_Rep_int_choice_input_Dist)
apply (simp split: split_if)
apply (rule cspF_reflex)
apply (simp add: fnfF_Rep_int_choice_step_def)
apply (rule cspF_input_Rep_int_choice_set_subset)
apply (rule fnfF_set_completion_subset)
apply (rule ballI)
apply (simp add: fnfF_set_completion_def)
apply (subgoal_tac
"Union (Union {Ysf c |c. c : C}) <= Union {Af c |c. c : C}")
apply (blast)
apply (auto)
done
(*------------------------------------*
| induction |
*------------------------------------*)
lemma cspF_fnfF_Rep_int_choice_eqF_lm:
"ALL C SPf.
(!! :C .. SPf) |. n =F !! :C ..[n] SPf"
apply (induct_tac n)
(* base *)
apply (intro allI)
apply (simp add: fnfF_Rep_int_choice.simps)
apply (rule cspF_rw_left)
apply (rule cspF_Depth_rest_Zero)
apply (rule cspF_NDIV_eqF)
(* step *)
apply (intro allI)
apply (case_tac "(ALL c:C. SPf c : fnfF_proc)")
apply (subgoal_tac "(ALL c:C. SPf c : fnfF_proc)")
apply (erule ALL_fnfF_procE)
apply (elim conjE exE)
apply (simp)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (simp)
apply (subgoal_tac
"(!! u:C ..
(if u : C
then ? :Af u -> Pff u [+] Qf u
|~| !set Y:Ysf u .. ? a:Y -> DIV
else SPf u))
=F (!! u:C .. (? :Af u -> Pff u [+] Qf u
|~| !set Y:Ysf u .. ? a:Y -> DIV))")
apply (assumption)
apply (rule cspF_decompo)
apply (simp)
apply (simp)
apply (rule cspF_rw_left)
apply (rule cspF_Dist_nonempty)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_fnfF_Depth_rest_dist)
apply (simp)
apply (rule cspF_rw_left)
apply (rule cspF_fnfF_Rep_int_choice_one_step)
apply (simp)
apply (simp)
apply (simp add: fnfF_Rep_int_choice.simps)
apply (rule fnfF_Rep_int_choice_step_subexp)
(* Pf *)
apply (rule ballI)
apply (drule_tac x=
"{c : C.
a : fnfF_A
(if c : C
then ? :Af c -> Pff c [+] Qf c
|~| !set Y:Ysf c .. ? a:Y -> DIV
else SPf c)}" in spec)
apply (drule_tac x=
"(%c. fnfF_Pf
(if c : C
then ? :Af c -> Pff c [+] Qf c
|~| !set Y:Ysf c .. ? a:Y -> DIV
else SPf c)
a)" in spec)
apply (rotate_tac -1)
apply (erule cspF_symE)
apply (rule cspF_rw_right)
apply (simp)
apply (rule cspF_rw_right)
apply (rule cspF_Dist)
apply (rule cspF_decompo)
apply (rule equalityI)
apply (rule subsetI)
apply (simp)
apply (rule subsetI)
apply (simp)
apply (elim conjE bexE)
apply (simp)
apply (simp_all)
apply (subgoal_tac "~(ALL c:C. SPf c : fnfF_proc)")
apply (simp (no_asm_simp) add: fnfF_Rep_int_choice.simps)
apply (simp)
done
(*------------------------------------*
| eqF |
*------------------------------------*)
lemma cspF_fnfF_Rep_int_choice_eqF:
"(!! :C .. SPf) |. n =F (!! :C ..[n] SPf)"
apply (simp add: cspF_fnfF_Rep_int_choice_eqF_lm)
done
(*============================================================*
| |
| convenient expressions |
| |
*============================================================*)
(*------------------------------------*
| in |
*------------------------------------*)
lemma fnfF_Rep_int_choice_fun_in:
"[| inj f ; ALL x:X. SPf x : fnfF_proc |] ==>
!!<f> :X ..[n] SPf : fnfF_proc"
apply (insert fnfF_Rep_int_choice_in[of "(f ` X)" "(%x. SPf (inv f x))" n])
apply (simp add: fnfF_Rep_int_choice_fun_def)
done
lemma fnfF_Rep_int_choice_com_in:
"ALL x:X. SPf x : fnfF_proc ==>
! :X ..[n] SPf : fnfF_proc"
apply (simp add: fnfF_Rep_int_choice_com_def)
apply (rule fnfF_Rep_int_choice_fun_in)
apply (auto)
done
lemma fnfF_Rep_int_choice_set_in:
"ALL X:Xs. SPf X : fnfF_proc ==>
!set :Xs ..[n] SPf : fnfF_proc"
by (simp add: fnfF_Rep_int_choice_fun_in)
lemma fnfF_Rep_int_choice_nat_in:
"ALL m:N. SPf m : fnfF_proc ==>
!nat :N ..[n] SPf : fnfF_proc"
by (simp add: fnfF_Rep_int_choice_fun_in)
(*------------------------------------*
| eqF |
*------------------------------------*)
lemma cspF_fnfF_Rep_int_choice_fun_eqF:
"inj f ==>
(!!<f> :X .. SPf) |. n =F (!!<f> :X ..[n] SPf)"
apply (insert cspF_fnfF_Rep_int_choice_eqF[of "(f ` X)" "(%x. SPf (inv f x))" n])
apply (simp add: Rep_int_choice_fun_def)
apply (simp add: fnfF_Rep_int_choice_fun_def)
done
lemma cspF_fnfF_Rep_int_choice_com_eqF:
"(! :X .. SPf) |. n =F ! :X ..[n] SPf"
apply (simp add: fnfF_Rep_int_choice_com_def)
apply (simp add: Rep_int_choice_com_def)
apply (simp add: cspF_fnfF_Rep_int_choice_fun_eqF)
done
lemma cspF_fnfF_Rep_int_choice_set_eqF:
"(!set :Xs .. SPf) |. n =F !set :Xs ..[n] SPf"
by (simp add: cspF_fnfF_Rep_int_choice_fun_eqF)
lemma cspF_fnfF_Rep_int_choice_nat_eqF:
"(!nat :N .. SPf) |. n =F !nat :N ..[n] SPf"
by (simp add: cspF_fnfF_Rep_int_choice_fun_eqF)
(*------------------------*
| auxiliary laws |
*------------------------*)
lemma cspF_fnfF_Rep_int_choice_Depth_rest:
"(!! :C ..[n] SPf) |. n =F (!! :C ..[n] SPf)"
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (simp)
apply (rule cspF_fnfF_Rep_int_choice_eqF[THEN cspF_sym])
apply (rule cspF_rw_left)
apply (rule cspF_Depth_rest_min)
apply (simp)
apply (rule cspF_fnfF_Rep_int_choice_eqF)
done
(****************** to add them again ******************)
declare split_if [split]
declare disj_not1 [simp]
end
lemma fnfF_Rep_int_choice_in_lm:
∀C SPf. (∀c∈C. SPf c ∈ fnfF_proc) --> !! :C ..[n] SPf ∈ fnfF_proc
lemma fnfF_Rep_int_choice_in:
∀c∈C. SPf c ∈ fnfF_proc ==> !! :C ..[n] SPf ∈ fnfF_proc
lemma fnfF_Rep_int_choice_step_subexp:
[| ∀a∈Union {Af2.0 c |c. c ∈ C}. Pf1.0 a =F Pf2.0 a; ∀c∈C. Af1.0 c = Af2.0 c; ∀c∈C. Ysf1.0 c = Ysf2.0 c; ∀c∈C. Qf1.0 c = Qf2.0 c; ∀c∈C. Union (Ysf2.0 c) ⊆ Af2.0 c |] ==> fnfF_Rep_int_choice_step C Af1.0 Ysf1.0 Pf1.0 Qf1.0 =F fnfF_Rep_int_choice_step C Af2.0 Ysf2.0 Pf2.0 Qf2.0
lemma cspF_fnfF_Rep_int_choice_one_step:
[| ∀c∈C. Union (Ysf c) ⊆ Af c; ∀c∈C. Qf c = SKIP ∨ Qf c = DIV |] ==> !! c:C .. (? :Af c -> Pff c [+] Qf c |~| !set Y:Ysf c .. ? a:Y -> DIV) =F fnfF_Rep_int_choice_step C Af Ysf (%a. !! c:{c : C. a ∈ Af c} .. Pff c a) Qf
lemma cspF_fnfF_Rep_int_choice_eqF_lm:
∀C SPf. (!! :C .. SPf) |. n =F !! :C ..[n] SPf
lemma cspF_fnfF_Rep_int_choice_eqF:
(!! :C .. SPf) |. n =F !! :C ..[n] SPf
lemma fnfF_Rep_int_choice_fun_in:
[| inj f; ∀x∈X. SPf x ∈ fnfF_proc |] ==> !!<f> :X ..[n] SPf ∈ fnfF_proc
lemma fnfF_Rep_int_choice_com_in:
∀x∈X. SPf x ∈ fnfF_proc ==> ! :X ..[n] SPf ∈ fnfF_proc
lemma fnfF_Rep_int_choice_set_in:
∀X∈Xs. SPf X ∈ fnfF_proc ==> !set :Xs ..[n] SPf ∈ fnfF_proc
lemma fnfF_Rep_int_choice_nat_in:
∀m∈N. SPf m ∈ fnfF_proc ==> !nat :N ..[n] SPf ∈ fnfF_proc
lemma cspF_fnfF_Rep_int_choice_fun_eqF:
inj f ==> (!!<f> :X .. SPf) |. n =F !!<f> :X ..[n] SPf
lemma cspF_fnfF_Rep_int_choice_com_eqF:
(! :X .. SPf) |. n =F ! :X ..[n] SPf
lemma cspF_fnfF_Rep_int_choice_set_eqF:
(!set :Xs .. SPf) |. n =F !set :Xs ..[n] SPf
lemma cspF_fnfF_Rep_int_choice_nat_eqF:
(!nat :N .. SPf) |. n =F !nat :N ..[n] SPf
lemma cspF_fnfF_Rep_int_choice_Depth_rest:
(!! :C ..[n] SPf) |. n =F !! :C ..[n] SPf