Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory SKIP_cpo = SKIP + Domain_SF_prod_cpo: (*-------------------------------------------*
| CSP-Prover |
| February 2005 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory SKIP_cpo = SKIP + Domain_SF_prod_cpo:
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare disj_not1 [simp del]
(* The following simplification is sometimes unexpected. *)
(* *)
(* not_None_eq: (x ~= None) = (EX y. x = Some y) *)
declare not_None_eq [simp del]
(*****************************************************************
1. [[SKIP]]T : continuous
2. [[SKIP]]F : continuous
3.
4.
*****************************************************************)
(*** SKIP_evalT_continuous ***)
lemma SKIP_evalT_continuous: "continuous [[SKIP]]T"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (insert complete_cpo_lm)
apply (drule_tac x="X" in spec, simp)
apply (simp add: hasLUB_def)
apply (elim exE)
apply (rule_tac x="x" in exI, simp)
apply (simp add: evalT_def)
by (auto simp add: isLUB_def isUB_def directed_def)
(*** SKIP_evalF_continuous ***)
lemma SKIP_evalF_continuous: "continuous [[SKIP]]F"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (insert complete_cpo_lm)
apply (drule_tac x="X" in spec, simp)
apply (simp add: hasLUB_def)
apply (elim exE)
apply (rule_tac x="x" in exI, simp)
apply (simp add: evalF_def)
by (auto simp add: isLUB_def isUB_def directed_def)
(****************** to add them again ******************)
declare disj_not1 [simp]
declare not_None_eq [simp]
end
lemma SKIP_evalT_continuous:
continuous [[SKIP]]T
lemma SKIP_evalF_continuous:
continuous [[SKIP]]F