Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory SKIP_cpo = SKIP + Domain_SF_prod_cpo:(*-------------------------------------------* | CSP-Prover | | February 2005 | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory SKIP_cpo = SKIP + Domain_SF_prod_cpo: (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare disj_not1 [simp del] (* The following simplification is sometimes unexpected. *) (* *) (* not_None_eq: (x ~= None) = (EX y. x = Some y) *) declare not_None_eq [simp del] (***************************************************************** 1. [[SKIP]]T : continuous 2. [[SKIP]]F : continuous 3. 4. *****************************************************************) (*** SKIP_evalT_continuous ***) lemma SKIP_evalT_continuous: "continuous [[SKIP]]T" apply (simp add: continuous_iff) apply (intro allI impI) apply (insert complete_cpo_lm) apply (drule_tac x="X" in spec, simp) apply (simp add: hasLUB_def) apply (elim exE) apply (rule_tac x="x" in exI, simp) apply (simp add: evalT_def) by (auto simp add: isLUB_def isUB_def directed_def) (*** SKIP_evalF_continuous ***) lemma SKIP_evalF_continuous: "continuous [[SKIP]]F" apply (simp add: continuous_iff) apply (intro allI impI) apply (insert complete_cpo_lm) apply (drule_tac x="X" in spec, simp) apply (simp add: hasLUB_def) apply (elim exE) apply (rule_tac x="x" in exI, simp) apply (simp add: evalF_def) by (auto simp add: isLUB_def isUB_def directed_def) (****************** to add them again ******************) declare disj_not1 [simp] declare not_None_eq [simp] end
lemma SKIP_evalT_continuous:
continuous [[SKIP]]T
lemma SKIP_evalF_continuous:
continuous [[SKIP]]F