(*-------------------------------------------* | CSP-Prover | | December 2004 | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory SKIP = CSP_semantics: (***************************************************************** 1. ([[SKIP]]T ev, [[SKIP]]F ev) : domSF 2. 3. 4. *****************************************************************) (********************************************************* domT and domF *********************************************************) (*** SKIP_memT ***) lemma SKIP_memT: "(t :t [[SKIP]]T ev) = (t = []t | t = [Tick]t)" by (simp add: evalT_def memT_def Abs_domT_inverse) (*** SKIP_domF ***) lemma SKIP_domF: "{f. (EX X. f = ([]t, X) & X <= Evset) | (EX X. f = ([Tick]t, X)) } : domF" by (auto simp add: domF_def HC_F2_def) (*** SKIP_memF ***) lemma SKIP_memF : "(f :f [[SKIP]]F ev) = ((EX X. f = ([]t, X) & X <= Evset) | (EX X. f = ([Tick]t, X)))" apply (simp add: memF_def evalF_def) by (simp add: SKIP_domF Abs_domF_inverse) lemmas SKIP_mem = SKIP_memT SKIP_memF (******************************* domSF *******************************) (* T2 *) lemma SKIP_T2 : "HC_T2 ([[SKIP]]T ev, [[SKIP]]F ev)" by (simp add: HC_T2_def SKIP_mem) (* F3 *) lemma SKIP_F3 : "HC_F3 ([[SKIP]]T ev, [[SKIP]]F ev)" apply (simp add: HC_F3_def SKIP_mem) by (auto simp add: Evset_def) (* T3_F4 *) lemma SKIP_T3_F4 : "HC_T3_F4 ([[SKIP]]T ev, [[SKIP]]F ev)" by (simp add: HC_T3_F4_def SKIP_mem) (*** SKIP_domSF ***) lemma SKIP_domSF : "([[SKIP]]T ev, [[SKIP]]F ev) : domSF" apply (simp add: domSF_iff) apply (simp add: SKIP_T2) apply (simp add: SKIP_F3) apply (simp add: SKIP_T3_F4) done end
lemma SKIP_memT:
(t :t [[SKIP]]T ev) = (t = []t ∨ t = [Tick]t)
lemma SKIP_domF:
{f. (∃X. f = ([]t, X) ∧ X ⊆ Evset) ∨ (∃X. f = ([Tick]t, X))} ∈ domF
lemma SKIP_memF:
(f :f [[SKIP]]F ev) = ((∃X. f = ([]t, X) ∧ X ⊆ Evset) ∨ (∃X. f = ([Tick]t, X)))
lemmas SKIP_mem:
(t :t [[SKIP]]T ev) = (t = []t ∨ t = [Tick]t)
(f :f [[SKIP]]F ev) = ((∃X. f = ([]t, X) ∧ X ⊆ Evset) ∨ (∃X. f = ([Tick]t, X)))
lemma SKIP_T2:
HC_T2 ([[SKIP]]T ev, [[SKIP]]F ev)
lemma SKIP_F3:
HC_F3 ([[SKIP]]T ev, [[SKIP]]F ev)
lemma SKIP_T3_F4:
HC_T3_F4 ([[SKIP]]T ev, [[SKIP]]F ev)
lemma SKIP_domSF:
([[SKIP]]T ev, [[SKIP]]F ev) ∈ domSF