(*-------------------------------------------*
| CSP-Prover |
| December 2004 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory SKIP = CSP_semantics:
(*****************************************************************
1. ([[SKIP]]T ev, [[SKIP]]F ev) : domSF
2.
3.
4.
*****************************************************************)
(*********************************************************
domT and domF
*********************************************************)
(*** SKIP_memT ***)
lemma SKIP_memT: "(t :t [[SKIP]]T ev) = (t = []t | t = [Tick]t)"
by (simp add: evalT_def memT_def Abs_domT_inverse)
(*** SKIP_domF ***)
lemma SKIP_domF: "{f. (EX X. f = ([]t, X) & X <= Evset) |
(EX X. f = ([Tick]t, X)) } : domF"
by (auto simp add: domF_def HC_F2_def)
(*** SKIP_memF ***)
lemma SKIP_memF :
"(f :f [[SKIP]]F ev) = ((EX X. f = ([]t, X) & X <= Evset) |
(EX X. f = ([Tick]t, X)))"
apply (simp add: memF_def evalF_def)
by (simp add: SKIP_domF Abs_domF_inverse)
lemmas SKIP_mem = SKIP_memT SKIP_memF
(*******************************
domSF
*******************************)
(* T2 *)
lemma SKIP_T2 : "HC_T2 ([[SKIP]]T ev, [[SKIP]]F ev)"
by (simp add: HC_T2_def SKIP_mem)
(* F3 *)
lemma SKIP_F3 : "HC_F3 ([[SKIP]]T ev, [[SKIP]]F ev)"
apply (simp add: HC_F3_def SKIP_mem)
by (auto simp add: Evset_def)
(* T3_F4 *)
lemma SKIP_T3_F4 : "HC_T3_F4 ([[SKIP]]T ev, [[SKIP]]F ev)"
by (simp add: HC_T3_F4_def SKIP_mem)
(*** SKIP_domSF ***)
lemma SKIP_domSF : "([[SKIP]]T ev, [[SKIP]]F ev) : domSF"
apply (simp add: domSF_iff)
apply (simp add: SKIP_T2)
apply (simp add: SKIP_F3)
apply (simp add: SKIP_T3_F4)
done
end
lemma SKIP_memT:
(t :t [[SKIP]]T ev) = (t = []t ∨ t = [Tick]t)
lemma SKIP_domF:
{f. (∃X. f = ([]t, X) ∧ X ⊆ Evset) ∨ (∃X. f = ([Tick]t, X))} ∈ domF
lemma SKIP_memF:
(f :f [[SKIP]]F ev) = ((∃X. f = ([]t, X) ∧ X ⊆ Evset) ∨ (∃X. f = ([Tick]t, X)))
lemmas SKIP_mem:
(t :t [[SKIP]]T ev) = (t = []t ∨ t = [Tick]t)
(f :f [[SKIP]]F ev) = ((∃X. f = ([]t, X) ∧ X ⊆ Evset) ∨ (∃X. f = ([Tick]t, X)))
lemma SKIP_T2:
HC_T2 ([[SKIP]]T ev, [[SKIP]]F ev)
lemma SKIP_F3:
HC_F3 ([[SKIP]]T ev, [[SKIP]]F ev)
lemma SKIP_T3_F4:
HC_T3_F4 ([[SKIP]]T ev, [[SKIP]]F ev)
lemma SKIP_domSF:
([[SKIP]]T ev, [[SKIP]]F ev) ∈ domSF