Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory Int_choice_cpo = Int_choice + Domain_SF_prod_cpo:(*-------------------------------------------* | CSP-Prover | | February 2005 | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory Int_choice_cpo = Int_choice + Domain_SF_prod_cpo: (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare disj_not1 [simp del] (* The following simplification is sometimes unexpected. *) (* *) (* not_None_eq: (x ~= None) = (EX y. x = Some y) *) declare not_None_eq [simp del] (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* Union (B ` A) = (UN x:A. B x) *) (* Inter (B ` A) = (INT x:A. B x) *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare Union_image_eq [simp del] declare Inter_image_eq [simp del] (***************************************************************** 1. [[P |~| Q]]T : continuous 2. [[P |~| Q]]F : continuous 3. 4. *****************************************************************) (*** Int_choice_evalT_continuous ***) lemma Int_choice_evalT_continuous: "[| continuous [[P]]T ; continuous [[Q]]T |] ==> continuous [[P |~| Q]]T" apply (simp add: continuous_iff) apply (intro allI impI) apply (drule_tac x="X" in spec, simp) apply (drule_tac x="X" in spec, simp) apply (elim conjE exE) apply (subgoal_tac "xa = x") apply (rule_tac x="x" in exI, simp) apply (subgoal_tac "X ~= {}") apply (simp add: isLUB_UnionT) apply (rule eq_iffI) (* <= *) apply (rule) apply (simp add: memT_UnionT) apply (simp only: Int_choice_mem) apply (simp add: memT_UnionT) apply (elim bexE disjE) apply (rule_tac x="xb" in bexI, simp_all) apply (rule_tac x="xb" in bexI, simp_all) (* => *) apply (rule) apply (simp add: memT_UnionT) apply (simp only: Int_choice_mem) apply (simp add: memT_UnionT) apply (elim bexE disjE) apply (rule disjI1) apply (rule_tac x="xb" in bexI, simp_all) apply (rule disjI2) apply (rule_tac x="xb" in bexI, simp_all) apply (simp add: directed_def) by (rule LUB_unique, simp_all) (*** Int_choice_evalF_continuous ***) lemma Int_choice_evalF_continuous: "[| continuous [[P]]F ; continuous [[Q]]F |] ==> continuous [[P |~| Q]]F" apply (simp add: continuous_iff) apply (intro allI impI) apply (drule_tac x="X" in spec, simp) apply (drule_tac x="X" in spec, simp) apply (elim conjE exE) apply (subgoal_tac "xa = x") apply (rule_tac x="x" in exI, simp) apply (subgoal_tac "X ~= {}") apply (simp add: isLUB_UnionF) apply (rule eq_iffI) (* <= *) apply (rule) apply (simp add: Int_choice_mem) apply (simp add: memF_UnionF) apply (simp add: Int_choice_mem) apply (elim conjE bexE disjE) apply (rule_tac x="xb" in bexI, simp, simp) apply (rule_tac x="xb" in bexI, simp, simp) (* => *) apply (rule) apply (simp add: Int_choice_mem) apply (simp add: memF_UnionF) apply (simp add: Int_choice_mem) apply (elim conjE bexE disjE) apply (rule disjI1) apply (rule_tac x="xb" in bexI, simp, simp) apply (rule disjI2) apply (rule_tac x="xb" in bexI, simp, simp) apply (simp add: directed_def) by (simp add: LUB_unique) (****************** to add them again ******************) declare Union_image_eq [simp] declare Inter_image_eq [simp] declare disj_not1 [simp] declare not_None_eq [simp] end
lemma Int_choice_evalT_continuous:
[| continuous [[P]]T; continuous [[Q]]T |] ==> continuous [[P |~| Q]]T
lemma Int_choice_evalF_continuous:
[| continuous [[P]]F; continuous [[Q]]F |] ==> continuous [[P |~| Q]]F