Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory Int_choice = CSP_semantics: (*-------------------------------------------*
| CSP-Prover |
| December 2004 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory Int_choice = CSP_semantics:
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare disj_not1 [simp del]
(* The following simplification is sometimes unexpected. *)
(* *)
(* not_None_eq: (x ~= None) = (EX y. x = Some y) *)
declare not_None_eq [simp del]
(*********************************************************
Dom_T
*********************************************************)
(*** Int_choice_memT ***)
lemma Int_choice_memT:
"(t :t [[P |~| Q]]T ev) = (t :t [[P]]T ev | t :t [[Q]]T ev)"
by (simp add: evalT_def memT_UnT)
(*********************************************************
Dom_F
*********************************************************)
(*** Int_choice_memF ***)
lemma Int_choice_memF:
"(f :f [[P |~| Q]]F ev) = (f :f [[P]]F ev | f :f [[Q]]F ev)"
by (simp add: evalF_def memF_UnF)
lemmas Int_choice_mem = Int_choice_memT Int_choice_memF
(*******************************
domSF
*******************************)
(* T2 *)
lemma Int_choice_T2 :
"[| ([[P]]T ev, [[P]]F ev) : domSF ; ([[Q]]T ev, [[Q]]F ev) : domSF |]
==> HC_T2 ([[P |~| Q]]T ev, [[P |~| Q]]F ev)"
apply (simp add: HC_T2_def Int_choice_mem)
apply (simp add: domSF_def HC_T2_def)
by (auto)
(* F3 *)
lemma Int_choice_F3 :
"[| ([[P]]T ev, [[P]]F ev) : domSF ; ([[Q]]T ev, [[Q]]F ev) : domSF |]
==> HC_F3 ([[P |~| Q]]T ev, [[P |~| Q]]F ev)"
apply (simp add: HC_F3_def Int_choice_mem)
apply (simp add: domSF_def HC_F3_def)
by (auto)
(* T3_F4 *)
lemma Int_choice_T3_F4 :
"[| ([[P]]T ev, [[P]]F ev) : domSF ; ([[Q]]T ev, [[Q]]F ev) : domSF |]
==> HC_T3_F4 ([[P |~| Q]]T ev, [[P |~| Q]]F ev)"
apply (simp add: HC_T3_F4_def Int_choice_mem)
apply (simp add: domSF_iff HC_T3_F4_def)
by (auto)
(*** Int_choice_domSF ***)
lemma Int_choice_domSF :
"[| ([[P]]T ev, [[P]]F ev) : domSF ; ([[Q]]T ev, [[Q]]F ev) : domSF |]
==> ([[P |~| Q]]T ev, [[P |~| Q]]F ev) : domSF"
apply (simp (no_asm) add: domSF_iff)
apply (simp add: Int_choice_T2)
apply (simp add: Int_choice_F3)
apply (simp add: Int_choice_T3_F4)
done
(*********************************************************
mono
*********************************************************)
(*** T ***)
lemma Int_choice_evalT_mono:
"[| [[P1]]T ev1 <= [[P2]]T ev2 ; [[Q1]]T ev1 <= [[Q2]]T ev2 |]
==> [[P1 |~| Q1]]T ev1 <= [[P2 |~| Q2]]T ev2"
apply (simp add: subsetT_iff)
apply (intro allI impI)
apply (simp add: Int_choice_memT)
apply (erule disjE)
by (simp_all)
(*** F ***)
lemma Int_choice_evalF_mono:
"[| [[P1]]F ev1 <= [[P2]]F ev2 ; [[Q1]]F ev1 <= [[Q2]]F ev2 |]
==> [[P1 |~| Q1]]F ev1 <= [[P2 |~| Q2]]F ev2"
apply (simp add: subsetF_iff)
apply (intro allI impI)
apply (simp add: Int_choice_memF)
apply (erule disjE)
by (simp_all)
(****************** to add them again ******************)
declare disj_not1 [simp]
declare not_None_eq [simp]
end
lemma Int_choice_memT:
(t :t [[P |~| Q]]T ev) = (t :t [[P]]T ev ∨ t :t [[Q]]T ev)
lemma Int_choice_memF:
(f :f [[P |~| Q]]F ev) = (f :f [[P]]F ev ∨ f :f [[Q]]F ev)
lemmas Int_choice_mem:
(t :t [[P |~| Q]]T ev) = (t :t [[P]]T ev ∨ t :t [[Q]]T ev)
(f :f [[P |~| Q]]F ev) = (f :f [[P]]F ev ∨ f :f [[Q]]F ev)
lemma Int_choice_T2:
[| ([[P]]T ev, [[P]]F ev) ∈ domSF; ([[Q]]T ev, [[Q]]F ev) ∈ domSF |] ==> HC_T2 ([[P |~| Q]]T ev, [[P |~| Q]]F ev)
lemma Int_choice_F3:
[| ([[P]]T ev, [[P]]F ev) ∈ domSF; ([[Q]]T ev, [[Q]]F ev) ∈ domSF |] ==> HC_F3 ([[P |~| Q]]T ev, [[P |~| Q]]F ev)
lemma Int_choice_T3_F4:
[| ([[P]]T ev, [[P]]F ev) ∈ domSF; ([[Q]]T ev, [[Q]]F ev) ∈ domSF |] ==> HC_T3_F4 ([[P |~| Q]]T ev, [[P |~| Q]]F ev)
lemma Int_choice_domSF:
[| ([[P]]T ev, [[P]]F ev) ∈ domSF; ([[Q]]T ev, [[Q]]F ev) ∈ domSF |] ==> ([[P |~| Q]]T ev, [[P |~| Q]]F ev) ∈ domSF
lemma Int_choice_evalT_mono:
[| [[P1]]T ev1 ≤ [[P2]]T ev2; [[Q1]]T ev1 ≤ [[Q2]]T ev2 |] ==> [[P1 |~| Q1]]T ev1 ≤ [[P2 |~| Q2]]T ev2
lemma Int_choice_evalF_mono:
[| [[P1]]F ev1 ≤ [[P2]]F ev2; [[Q1]]F ev1 ≤ [[Q2]]F ev2 |] ==> [[P1 |~| Q1]]F ev1 ≤ [[P2 |~| Q2]]F ev2