Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory Ext_choice_cms = Ext_choice + Domain_SF_prod_cms: (*-------------------------------------------*
| CSP-Prover |
| December 2004 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory Ext_choice_cms = Ext_choice + Domain_SF_prod_cms:
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare disj_not1 [simp del]
(* The following simplification is sometimes unexpected. *)
(* *)
(* not_None_eq: (x ~= None) = (EX y. x = Some y) *)
declare not_None_eq [simp del]
(*****************************************************************
1. [[P [+] Q]]T : non expanding
2. [[P [+] Q]]F : non expanding
3.
4.
*****************************************************************)
(*********************************************************
map Ext_choice T
*********************************************************)
(*** restT (subset) ***)
lemma Ext_choice_restT_sub:
"[| [[P]]T ev1 rest n <= [[P]]T ev2 rest n ;
[[Q]]T ev1 rest n <= [[Q]]T ev2 rest n |]
==> [[P [+] Q]]T ev1 rest n <= [[P [+] Q]]T ev2 rest n"
apply (simp add: subsetT_iff)
apply (intro allI impI)
apply (simp add: in_restT)
apply (simp add: Ext_choice_memT)
by (auto)
(*** restT (equal) ***)
lemma Ext_choice_restT:
"[| [[P]]T ev1 rest n = [[P]]T ev2 rest n ;
[[Q]]T ev1 rest n = [[Q]]T ev2 rest n |]
==> [[P [+] Q]]T ev1 rest n = [[P [+] Q]]T ev2 rest n"
apply (rule order_antisym)
by (simp_all add: Ext_choice_restT_sub)
(*** distT lemma ***)
lemma Ext_choice_distT:
"TTs = {([[P]]T ev1, [[P]]T ev2), ([[Q]]T ev1, [[Q]]T ev2)}
==> (EX TT. TT:TTs &
distance([[P [+] Q]]T ev1, [[P [+] Q]]T ev2)
<= distance((fst TT), (snd TT)))"
apply (rule rest_to_dist_pair)
by (auto intro: Ext_choice_restT)
(*** map_alpha T lemma ***)
lemma Ext_choice_evalT_map_alpha_lm:
"[| distance ([[P]]T ev1, [[P]]T ev2) <= alpha * distance (ev1, ev2) ;
distance ([[Q]]T ev1, [[Q]]T ev2) <= alpha * distance (ev1, ev2) |]
==> distance ([[P [+] Q]]T ev1, [[P [+] Q]]T ev2)
<= alpha * distance (ev1, ev2)"
apply (insert Ext_choice_distT
[of "{([[P]]T ev1, [[P]]T ev2), ([[Q]]T ev1, [[Q]]T ev2)}" P ev1 ev2 Q])
by (auto)
(*** Ext_choice_evalT_map_alpha ***)
lemma Ext_choice_evalT_map_alpha:
"[| map_alpha [[P]]T alpha ; map_alpha [[Q]]T alpha |]
==> map_alpha [[P [+] Q]]T alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
by (simp add: Ext_choice_evalT_map_alpha_lm)
(*** Ext_choice_evalT_non_expanding ***)
lemma Ext_choice_evalT_non_expanding:
"[| non_expanding [[P]]T ; non_expanding [[Q]]T |]
==> non_expanding [[P [+] Q]]T"
by (simp add: non_expanding_def Ext_choice_evalT_map_alpha)
(*** Ext_choice_evalT_contraction_alpha ***)
lemma Ext_choice_evalT_contraction_alpha:
"[| contraction_alpha [[P]]T alpha; contraction_alpha [[Q]]T alpha|]
==> contraction_alpha [[P [+] Q]]T alpha"
by (simp add: contraction_alpha_def Ext_choice_evalT_map_alpha)
(*********************************************************
map Ext_choice F
*********************************************************)
(*** restF (subset) ***)
lemma Ext_choice_restF_sub:
"[| [[P]]T ev1 rest n <= [[P]]T ev2 rest n ;
[[Q]]T ev1 rest n <= [[Q]]T ev2 rest n ;
[[P]]F ev1 rest n <= [[P]]F ev2 rest n ;
[[Q]]F ev1 rest n <= [[Q]]F ev2 rest n |]
==> [[P [+] Q]]F ev1 rest n <= [[P [+] Q]]F ev2 rest n"
apply (simp add: subsetF_iff subsetT_iff)
apply (intro allI impI)
apply (simp add: in_restF in_restT)
apply (simp add: Ext_choice_memF)
apply (elim conjE exE disjE, simp_all)
apply (simp add: memF_IntF)
apply (simp add: memF_UnF)
apply (erule disjE, simp_all)
apply (simp add: memT_UnT)
apply (erule disjE, simp_all)
apply (simp add: memF_UnF)
apply (rotate_tac 2)
apply (drule_tac x="s' @t [Tick]t" in spec)
apply (drule_tac x="s' @t [Tick]t" in spec)
apply (drule_tac x="X" in spec)
apply (drule_tac x="X" in spec)
apply (fast)
done
(*** restF (equal) ***)
lemma Ext_choice_restF:
"[| [[P]]T ev1 rest n = [[P]]T ev2 rest n ;
[[Q]]T ev1 rest n = [[Q]]T ev2 rest n ;
[[P]]F ev1 rest n = [[P]]F ev2 rest n ;
[[Q]]F ev1 rest n = [[Q]]F ev2 rest n |]
==> [[P [+] Q]]F ev1 rest n = [[P [+] Q]]F ev2 rest n"
apply (rule order_antisym)
by (simp_all add: Ext_choice_restF_sub)
(*** distF lemma ***)
lemma Ext_choice_distF:
"[| TTs = {([[P]]T ev1, [[P]]T ev2), ([[Q]]T ev1, [[Q]]T ev2)} ;
FFs = {([[P]]F ev1, [[P]]F ev2), ([[Q]]F ev1, [[Q]]F ev2)} |]
==> (EX TT. TT:TTs &
distance([[P [+] Q]]F ev1, [[P [+] Q]]F ev2)
<= distance((fst TT), (snd TT))) |
(EX FF. FF:FFs &
distance([[P [+] Q]]F ev1, [[P [+] Q]]F ev2)
<= distance((fst FF), (snd FF)))"
apply (rule rest_to_dist_pair_two)
apply (simp_all)
by (auto intro: Ext_choice_restF)
(*** map_alpha F lemma ***)
lemma Ext_choice_evalF_map_alpha_lm:
"[| distance ([[P]]T ev1, [[P]]T ev2) <= alpha * distance (ev1, ev2) ;
distance ([[Q]]T ev1, [[Q]]T ev2) <= alpha * distance (ev1, ev2) ;
distance ([[P]]F ev1, [[P]]F ev2) <= alpha * distance (ev1, ev2) ;
distance ([[Q]]F ev1, [[Q]]F ev2) <= alpha * distance (ev1, ev2) |]
==> distance ([[P [+] Q]]F ev1, [[P [+] Q]]F ev2)
<= alpha * distance (ev1, ev2)"
apply (insert Ext_choice_distF
[of "{([[P]]T ev1, [[P]]T ev2), ([[Q]]T ev1, [[Q]]T ev2)}" P ev1 ev2 Q
"{([[P]]F ev1, [[P]]F ev2), ([[Q]]F ev1, [[Q]]F ev2)}"])
by (auto)
(*** Ext_choice_evalF_map_alpha ***)
lemma Ext_choice_evalF_map_alpha:
"[| map_alpha [[P]]T alpha ; map_alpha [[Q]]T alpha ;
map_alpha [[P]]F alpha ; map_alpha [[Q]]F alpha |]
==> map_alpha [[P [+] Q]]F alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
by (simp add: Ext_choice_evalF_map_alpha_lm)
lemma Ext_choice_evalF_non_expanding:
"[| non_expanding [[P]]T ; non_expanding [[Q]]T ;
non_expanding [[P]]F ; non_expanding [[Q]]F |]
==> non_expanding [[P [+] Q]]F"
by (simp add: non_expanding_def Ext_choice_evalF_map_alpha)
(*** Ext_choice_evalF_contraction_alpha ***)
lemma Ext_choice_evalF_contraction_alpha:
"[| contraction_alpha [[P]]T alpha; contraction_alpha [[Q]]T alpha ;
contraction_alpha [[P]]F alpha; contraction_alpha [[Q]]F alpha|]
==> contraction_alpha [[P [+] Q]]F alpha"
by (simp add: contraction_alpha_def Ext_choice_evalF_map_alpha)
(****************** to add them again ******************)
declare disj_not1 [simp]
declare not_None_eq [simp]
end
lemma Ext_choice_restT_sub:
[| [[P]]T ev1 rest n ≤ [[P]]T ev2 rest n; [[Q]]T ev1 rest n ≤ [[Q]]T ev2 rest n |] ==> [[P [+] Q]]T ev1 rest n ≤ [[P [+] Q]]T ev2 rest n
lemma Ext_choice_restT:
[| [[P]]T ev1 rest n = [[P]]T ev2 rest n; [[Q]]T ev1 rest n = [[Q]]T ev2 rest n |] ==> [[P [+] Q]]T ev1 rest n = [[P [+] Q]]T ev2 rest n
lemma Ext_choice_distT:
TTs = {([[P]]T ev1, [[P]]T ev2), ([[Q]]T ev1, [[Q]]T ev2)} ==> ∃TT. TT ∈ TTs ∧ distance ([[P [+] Q]]T ev1, [[P [+] Q]]T ev2) ≤ distance (fst TT, snd TT)
lemma Ext_choice_evalT_map_alpha_lm:
[| distance ([[P]]T ev1, [[P]]T ev2) ≤ alpha * distance (ev1, ev2); distance ([[Q]]T ev1, [[Q]]T ev2) ≤ alpha * distance (ev1, ev2) |] ==> distance ([[P [+] Q]]T ev1, [[P [+] Q]]T ev2) ≤ alpha * distance (ev1, ev2)
lemma Ext_choice_evalT_map_alpha:
[| map_alpha [[P]]T alpha; map_alpha [[Q]]T alpha |] ==> map_alpha [[P [+] Q]]T alpha
lemma Ext_choice_evalT_non_expanding:
[| non_expanding [[P]]T; non_expanding [[Q]]T |] ==> non_expanding [[P [+] Q]]T
lemma Ext_choice_evalT_contraction_alpha:
[| contraction_alpha [[P]]T alpha; contraction_alpha [[Q]]T alpha |] ==> contraction_alpha [[P [+] Q]]T alpha
lemma Ext_choice_restF_sub:
[| [[P]]T ev1 rest n ≤ [[P]]T ev2 rest n; [[Q]]T ev1 rest n ≤ [[Q]]T ev2 rest n; [[P]]F ev1 rest n ≤ [[P]]F ev2 rest n; [[Q]]F ev1 rest n ≤ [[Q]]F ev2 rest n |] ==> [[P [+] Q]]F ev1 rest n ≤ [[P [+] Q]]F ev2 rest n
lemma Ext_choice_restF:
[| [[P]]T ev1 rest n = [[P]]T ev2 rest n; [[Q]]T ev1 rest n = [[Q]]T ev2 rest n; [[P]]F ev1 rest n = [[P]]F ev2 rest n; [[Q]]F ev1 rest n = [[Q]]F ev2 rest n |] ==> [[P [+] Q]]F ev1 rest n = [[P [+] Q]]F ev2 rest n
lemma Ext_choice_distF:
[| TTs = {([[P]]T ev1, [[P]]T ev2), ([[Q]]T ev1, [[Q]]T ev2)}; FFs = {([[P]]F ev1, [[P]]F ev2), ([[Q]]F ev1, [[Q]]F ev2)} |] ==> (∃TT. TT ∈ TTs ∧ distance ([[P [+] Q]]F ev1, [[P [+] Q]]F ev2) ≤ distance (fst TT, snd TT)) ∨ (∃FF. FF ∈ FFs ∧ distance ([[P [+] Q]]F ev1, [[P [+] Q]]F ev2) ≤ distance (fst FF, snd FF))
lemma Ext_choice_evalF_map_alpha_lm:
[| distance ([[P]]T ev1, [[P]]T ev2) ≤ alpha * distance (ev1, ev2); distance ([[Q]]T ev1, [[Q]]T ev2) ≤ alpha * distance (ev1, ev2); distance ([[P]]F ev1, [[P]]F ev2) ≤ alpha * distance (ev1, ev2); distance ([[Q]]F ev1, [[Q]]F ev2) ≤ alpha * distance (ev1, ev2) |] ==> distance ([[P [+] Q]]F ev1, [[P [+] Q]]F ev2) ≤ alpha * distance (ev1, ev2)
lemma Ext_choice_evalF_map_alpha:
[| map_alpha [[P]]T alpha; map_alpha [[Q]]T alpha; map_alpha [[P]]F alpha; map_alpha [[Q]]F alpha |] ==> map_alpha [[P [+] Q]]F alpha
lemma Ext_choice_evalF_non_expanding:
[| non_expanding [[P]]T; non_expanding [[Q]]T; non_expanding [[P]]F; non_expanding [[Q]]F |] ==> non_expanding [[P [+] Q]]F
lemma Ext_choice_evalF_contraction_alpha:
[| contraction_alpha [[P]]T alpha; contraction_alpha [[Q]]T alpha; contraction_alpha [[P]]F alpha; contraction_alpha [[Q]]F alpha |] ==> contraction_alpha [[P [+] Q]]F alpha