Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory Ext_choice = CSP_semantics: (*-------------------------------------------*
| CSP-Prover |
| December 2004 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory Ext_choice = CSP_semantics:
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare disj_not1 [simp del]
(* The following simplification is sometimes unexpected. *)
(* *)
(* not_None_eq: (x ~= None) = (EX y. x = Some y) *)
declare not_None_eq [simp del]
(*********************************************************
Dom_T
*********************************************************)
(*** Ext_choice_memT ***)
lemma Ext_choice_memT:
"(t :t [[P [+] Q]]T ev) = (t :t [[P]]T ev | t :t [[Q]]T ev)"
by (simp add: evalT_def memT_UnT)
(*********************************************************
Dom_F
*********************************************************)
(*** Ext_choice_domF ***)
lemma Ext_choice_domF:
"{f. (EX X. f = ([]t,X) & f :f [[P]]F ev IntF [[Q]]F ev) |
(EX s X. f = (s,X) & f :f [[P]]F ev UnF [[Q]]F ev &
s ~= []t) |
(EX X. f = ([]t,X) & [Tick]t :t [[P]]T ev UnT [[Q]]T ev &
X <= Evset)} : domF"
apply (simp add: domF_def HC_F2_def)
apply (intro allI impI)
apply (elim conjE disjE)
(* part1 *)
apply (simp add: memF_IntF)
apply (rule disjI1)
apply (rule conjI)
apply (rule memF_F2, simp_all)
apply (rule memF_F2, simp_all)
(* part2 *)
apply (simp add: memF_UnF)
apply (erule disjE)
apply (rule disjI1)
apply (rule memF_F2, simp_all)
apply (rule disjI2)
apply (rule memF_F2, simp_all)
(* part3 *)
apply (fast)
done
(*** Ext_choice_memT ***)
lemma Ext_choice_memF:
"(f :f [[P [+] Q]]F ev) =
((EX X. f = ([]t,X) & f :f [[P]]F ev IntF [[Q]]F ev) |
(EX s X. f = (s,X) & f :f [[P]]F ev UnF [[Q]]F ev & s ~= []t) |
(EX X. f = ([]t,X) & [Tick]t :t [[P]]T ev UnT [[Q]]T ev & X <= Evset))"
apply (simp only: evalF_def)
apply (simp only: memF_def Abs_domF_inverse Ext_choice_domF[simplified memF_def])
by (simp)
lemmas Ext_choice_mem = Ext_choice_memT Ext_choice_memF
(*******************************
domSF
*******************************)
(* T2 *)
lemma Ext_choice_T2 :
"[| ([[P]]T ev, [[P]]F ev) : domSF ; ([[Q]]T ev, [[Q]]F ev) : domSF |]
==> HC_T2 ([[P [+] Q]]T ev, [[P [+] Q]]F ev)"
apply (simp add: HC_T2_def Ext_choice_mem)
apply (intro allI impI)
apply (elim conjE exE)
apply (simp add: memF_UnF)
apply (simp add: domSF_def HC_T2_def)
apply (elim conjE)
apply (drule_tac x="s" in spec)
apply (drule_tac x="s" in spec)
by (fast)
(* F3 *)
lemma Ext_choice_F3 :
"[| ([[P]]T ev, [[P]]F ev) : domSF ; ([[Q]]T ev, [[Q]]F ev) : domSF |]
==> HC_F3 ([[P [+] Q]]T ev, [[P [+] Q]]F ev)"
apply (simp add: HC_F3_def Ext_choice_mem)
apply (intro allI impI)
apply (elim conjE disjE)
(* part1 *)
apply (simp add: memF_IntF)
apply (simp add: domSF_def HC_F3_def)
(* part2 *)
apply (simp add: memF_UnF)
apply (simp add: domSF_def HC_F3_def)
apply (force)
(* part3 *)
apply (simp add: memT_UnT memF_IntF)
apply (case_tac "Tick ~: Y")
apply (simp add: Evset_def)
apply (force)
(* Tick : Y *)
apply (drule_tac x="Tick" in spec)
apply (simp)
done
(* T3_F4 *)
lemma Ext_choice_T3_F4 :
"[| ([[P]]T ev, [[P]]F ev) : domSF ; ([[Q]]T ev, [[Q]]F ev) : domSF |]
==> HC_T3_F4 ([[P [+] Q]]T ev, [[P [+] Q]]F ev)"
apply (simp add: HC_T3_F4_def Ext_choice_mem)
apply (intro allI impI)
apply (elim conjE exE)
apply (simp add: domSF_iff HC_T3_F4_def)
apply (elim conjE)
apply (drule_tac x="s" in spec)
apply (drule_tac x="s" in spec)
apply (simp add: memF_UnF memT_UnT)
by (auto)
(*** Ext_choice_domSF ***)
lemma Ext_choice_domSF :
"[| ([[P]]T ev, [[P]]F ev) : domSF ; ([[Q]]T ev, [[Q]]F ev) : domSF |]
==> ([[P [+] Q]]T ev, [[P [+] Q]]F ev) : domSF"
apply (simp (no_asm) add: domSF_iff)
apply (simp add: Ext_choice_T2)
apply (simp add: Ext_choice_F3)
apply (simp add: Ext_choice_T3_F4)
done
(*********************************************************
mono
*********************************************************)
(*** T ***)
lemma Ext_choice_evalT_mono:
"[| [[P1]]T ev1 <= [[P2]]T ev2 ; [[Q1]]T ev1 <= [[Q2]]T ev2 |]
==> [[P1 [+] Q1]]T ev1 <= [[P2 [+] Q2]]T ev2"
apply (simp add: subsetT_iff)
apply (intro allI impI)
apply (simp add: Ext_choice_memT)
apply (erule disjE)
by (simp_all)
(*** F ***)
lemma Ext_choice_evalF_mono:
"[| [[P1]]T ev1 <= [[P2]]T ev2 ; [[Q1]]T ev1 <= [[Q2]]T ev2 ;
[[P1]]F ev1 <= [[P2]]F ev2 ; [[Q1]]F ev1 <= [[Q2]]F ev2 |]
==> [[P1 [+] Q1]]F ev1 <= [[P2 [+] Q2]]F ev2"
apply (simp add: subsetF_iff)
apply (intro allI impI)
apply (simp add: Ext_choice_memF)
apply (erule disjE)
apply (simp add: memF_IntF)
apply (force)
apply (erule disjE)
apply (simp add: memF_UnF)
apply (force)
apply (simp add: memT_UnT memF_IntF)
apply (simp add: subsetT_iff)
apply (elim conjE disjE)
apply (auto)
done
(****************** to add them again ******************)
declare disj_not1 [simp]
declare not_None_eq [simp]
end
lemma Ext_choice_memT:
(t :t [[P [+] Q]]T ev) = (t :t [[P]]T ev ∨ t :t [[Q]]T ev)
lemma Ext_choice_domF:
{f. (∃X. f = ([]t, X) ∧ f :f [[P]]F ev IntF [[Q]]F ev) ∨
(∃s X. f = (s, X) ∧ f :f [[P]]F ev UnF [[Q]]F ev ∧ s ≠ []t) ∨
(∃X. f = ([]t, X) ∧ [Tick]t :t [[P]]T ev UnT [[Q]]T ev ∧ X ⊆ Evset)}
∈ domF
lemma Ext_choice_memF:
(f :f [[P [+] Q]]F ev) = ((∃X. f = ([]t, X) ∧ f :f [[P]]F ev IntF [[Q]]F ev) ∨ (∃s X. f = (s, X) ∧ f :f [[P]]F ev UnF [[Q]]F ev ∧ s ≠ []t) ∨ (∃X. f = ([]t, X) ∧ [Tick]t :t [[P]]T ev UnT [[Q]]T ev ∧ X ⊆ Evset))
lemmas Ext_choice_mem:
(t :t [[P [+] Q]]T ev) = (t :t [[P]]T ev ∨ t :t [[Q]]T ev)
(f :f [[P [+] Q]]F ev) = ((∃X. f = ([]t, X) ∧ f :f [[P]]F ev IntF [[Q]]F ev) ∨ (∃s X. f = (s, X) ∧ f :f [[P]]F ev UnF [[Q]]F ev ∧ s ≠ []t) ∨ (∃X. f = ([]t, X) ∧ [Tick]t :t [[P]]T ev UnT [[Q]]T ev ∧ X ⊆ Evset))
lemma Ext_choice_T2:
[| ([[P]]T ev, [[P]]F ev) ∈ domSF; ([[Q]]T ev, [[Q]]F ev) ∈ domSF |] ==> HC_T2 ([[P [+] Q]]T ev, [[P [+] Q]]F ev)
lemma Ext_choice_F3:
[| ([[P]]T ev, [[P]]F ev) ∈ domSF; ([[Q]]T ev, [[Q]]F ev) ∈ domSF |] ==> HC_F3 ([[P [+] Q]]T ev, [[P [+] Q]]F ev)
lemma Ext_choice_T3_F4:
[| ([[P]]T ev, [[P]]F ev) ∈ domSF; ([[Q]]T ev, [[Q]]F ev) ∈ domSF |] ==> HC_T3_F4 ([[P [+] Q]]T ev, [[P [+] Q]]F ev)
lemma Ext_choice_domSF:
[| ([[P]]T ev, [[P]]F ev) ∈ domSF; ([[Q]]T ev, [[Q]]F ev) ∈ domSF |] ==> ([[P [+] Q]]T ev, [[P [+] Q]]F ev) ∈ domSF
lemma Ext_choice_evalT_mono:
[| [[P1]]T ev1 ≤ [[P2]]T ev2; [[Q1]]T ev1 ≤ [[Q2]]T ev2 |] ==> [[P1 [+] Q1]]T ev1 ≤ [[P2 [+] Q2]]T ev2
lemma Ext_choice_evalF_mono:
[| [[P1]]T ev1 ≤ [[P2]]T ev2; [[Q1]]T ev1 ≤ [[Q2]]T ev2; [[P1]]F ev1 ≤ [[P2]]F ev2; [[Q1]]F ev1 ≤ [[Q2]]F ev2 |] ==> [[P1 [+] Q1]]F ev1 ≤ [[P2 [+] Q2]]F ev2