Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory CSP_proc_cms = CSP_proc + STOP_cms + SKIP_cms + DIV_cms + Act_prefix_cms + Ext_choice_cms + Ext_pre_choice_cms + Int_choice_cms + Rep_int_choice_cms + Conditional_cms + Parallel_cms + Renaming_cms + Seq_compo_cms + Proc_name_cms:(*-------------------------------------------* | CSP-Prover | | December 2004 | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_proc_cms = CSP_proc + STOP_cms + SKIP_cms + DIV_cms + Act_prefix_cms + Ext_choice_cms + Ext_pre_choice_cms + Int_choice_cms + Rep_int_choice_cms + Conditional_cms + Parallel_cms + Renaming_cms + Seq_compo_cms + Proc_name_cms : (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* Union (B ` A) = (UN x:A. B x) *) (* Inter (B ` A) = (INT x:A. B x) *) declare Union_image_eq [simp del] declare Inter_image_eq [simp del] (* note: split_paired_All: (ALL x. ?P x) = (ALL a b. ?P (a, b)) *) (* split_paired_Ex : (EX x. ?P x) = (EX a b. ?P (a, b)) *) declare split_paired_All [simp del] declare split_paired_Ex [simp del] (* The following simplification is sometimes unexpected. *) (* *) (* not_None_eq: (x ~= None) = (EX y. x = Some y) *) declare not_None_eq [simp del] (***************************************************************** 1. proc : nohide --> non-expanding 2. proc : guarded & nohide --> contraction 3. 4. *****************************************************************) (********************************************************* decompose subset of proc_rest *********************************************************) lemma proc_rest_subsetSF_decompo: "([[P]]SF ev1 rest n <= [[Q]]SF ev2 rest n) = ([[P]]T ev1 rest n <= [[Q]]T ev2 rest n & [[P]]F ev1 rest n <= [[Q]]F ev2 rest n)" apply (simp add: restSF_def) apply (simp add: subsetSF_def) apply (simp add: Abs_domSF_inverse) apply (simp add: evalSF_def) apply (simp add: pairSF_def) apply (simp add: restSFpair_def) apply (simp add: Abs_domSF_inverse) apply (simp add: pair_restriction_def) apply (simp add: order_pair_def) done lemma proc_rest_subsetT_decompo: "([[P]]SF ev1 rest n <= [[Q]]SF ev2 rest n) ==> [[P]]T ev1 rest n <= [[Q]]T ev2 rest n" by (simp add: proc_rest_subsetSF_decompo) lemma proc_rest_subsetF_decompo: "([[P]]SF ev1 rest n <= [[Q]]SF ev2 rest n) ==> [[P]]F ev1 rest n <= [[Q]]F ev2 rest n" by (simp add: proc_rest_subsetSF_decompo) (* eq *) lemma proc_rest_eqSF_decompo: "([[P]]SF ev1 rest n = [[Q]]SF ev2 rest n) = ([[P]]T ev1 rest n = [[Q]]T ev2 rest n & [[P]]F ev1 rest n = [[Q]]F ev2 rest n)" apply (simp add: eq_iff) apply (simp add: proc_rest_subsetSF_decompo) apply (rule iffI) by (simp_all) lemma proc_rest_eqT_decompo: "([[P]]SF ev1 rest n = [[Q]]SF ev2 rest n) ==> [[P]]T ev1 rest n = [[Q]]T ev2 rest n" by (simp add: proc_rest_eqSF_decompo) lemma proc_rest_eqF_decompo: "([[P]]SF ev1 rest n = [[Q]]SF ev2 rest n) ==> [[P]]F ev1 rest n = [[Q]]F ev2 rest n" by (simp add: proc_rest_eqSF_decompo) (********************************************************* map_alpha decomposition *********************************************************) (* Abs_domSF *) lemma map_alpha_Abs_domSF: "map_alpha [[P]]SF alpha = map_alpha ([[P]]T ** [[P]]F) alpha" apply (simp add: evalSF_def) apply (simp add: pairSF_def) apply (simp add: pair_fun_def) apply (simp add: contraction_alpha_def map_alpha_def) apply (simp add: distance_Abs_domSF) done (* decompo *) lemma map_alpha_evalSF_decompo: "map_alpha [[P]]SF alpha = (map_alpha [[P]]T alpha & map_alpha [[P]]F alpha)" apply (simp add: map_alpha_Abs_domSF) by (simp add: pair_map_alpha_compo) (* non_expanding *) lemma non_expanding_evalSF_decompo: "non_expanding [[P]]SF = (non_expanding [[P]]T & non_expanding [[P]]F)" apply (simp add: non_expanding_def) by (simp add: map_alpha_evalSF_decompo) (* contraction_alpha *) lemma contraction_alpha_evalSF_decompo: "contraction_alpha [[P]]SF alpha = (contraction_alpha [[P]]T alpha & contraction_alpha [[P]]F alpha)" apply (simp add: contraction_alpha_def) by (auto simp add: map_alpha_evalSF_decompo) (********************************************************* !!! proc non-expanding !!! *********************************************************) lemma evalSF_non_expanding_lm: "ALL P. nohide P --> non_expanding [[P]]SF" apply (rule allI) apply (simp add: non_expanding_evalSF_decompo) apply (induct_tac P) apply (simp add: STOP_evalT_non_expanding STOP_evalF_non_expanding) apply (simp add: SKIP_evalT_non_expanding SKIP_evalF_non_expanding) apply (simp add: DIV_evalT_non_expanding DIV_evalF_non_expanding) apply (simp add: Act_prefix_evalT_non_expanding Act_prefix_evalF_non_expanding) apply (simp add: Ext_pre_choice_evalT_non_expanding Ext_pre_choice_evalF_non_expanding) apply (simp add: Ext_choice_evalT_non_expanding Ext_choice_evalF_non_expanding) apply (simp add: Int_choice_evalT_non_expanding Int_choice_evalF_non_expanding) apply (simp add: Rep_int_choice_evalT_non_expanding Rep_int_choice_evalF_non_expanding) apply (simp add: Conditional_evalT_non_expanding Conditional_evalF_non_expanding) apply (simp add: Parallel_evalT_non_expanding Parallel_evalF_non_expanding) apply (simp) (* nohide *) apply (simp add: Renaming_evalT_non_expanding Renaming_evalF_non_expanding) apply (simp add: Seq_compo_evalT_non_expanding Seq_compo_evalF_non_expanding) apply (simp add: Proc_name_evalSF_non_expanding non_expanding_evalSF_decompo[THEN sym]) done lemma evalSF_non_expanding: "nohide P ==> non_expanding [[P]]SF" by (simp add: evalSF_non_expanding_lm) lemma evalT_and_evalF_non_expanding: "nohide P ==> (non_expanding [[P]]T & non_expanding [[P]]F)" apply (simp add: non_expanding_evalSF_decompo[THEN sym]) by (simp add: evalSF_non_expanding) lemma evalT_non_expanding: "nohide P ==> non_expanding [[P]]T" by (simp add: evalT_and_evalF_non_expanding) lemma evalF_non_expanding: "nohide P ==> non_expanding [[P]]F" by (simp add: evalT_and_evalF_non_expanding) (********************************************************* !!! proc contraction map !!! *********************************************************) lemma evalSF_contraction_half_lm: "ALL P. nohide P & guard P --> contraction_alpha [[P]]SF (1/2)" apply (rule allI) apply (simp add: contraction_alpha_evalSF_decompo) apply (induct_tac P) apply (simp add: STOP_evalT_contraction_alpha STOP_evalF_contraction_alpha) apply (simp add: SKIP_evalT_contraction_alpha SKIP_evalF_contraction_alpha) apply (simp add: DIV_evalT_contraction_alpha DIV_evalF_contraction_alpha) apply (intro impI conjI) apply (rule Act_prefix_evalT_contraction_half) apply (simp add: evalT_non_expanding) apply (rule Act_prefix_evalF_contraction_half) apply (simp add: evalF_non_expanding) apply (intro impI conjI) apply (rule Ext_pre_choice_evalT_contraction_half) apply (rule allI) apply (simp add: evalT_non_expanding) apply (rule Ext_pre_choice_evalF_contraction_half) apply (rule allI) apply (simp add: evalF_non_expanding) apply (simp add: Ext_choice_evalT_contraction_alpha Ext_choice_evalF_contraction_alpha) apply (simp add: Int_choice_evalT_contraction_alpha Int_choice_evalF_contraction_alpha) apply (simp add: Rep_int_choice_evalT_contraction_alpha Rep_int_choice_evalF_contraction_alpha) apply (simp add: Conditional_evalT_contraction_alpha Conditional_evalF_contraction_alpha) apply (simp add: Parallel_evalT_contraction_alpha Parallel_evalF_contraction_alpha) apply (simp) (* nohide *) apply (simp add: Renaming_evalT_contraction_alpha Renaming_evalF_contraction_alpha) apply (simp add: Seq_compo_evalT_contraction_alpha Seq_compo_evalF_contraction_alpha) apply (simp) (* guard *) done lemma evalSF_contraction_half: "[| nohide P ; guard P |] ==> contraction_alpha [[P]]SF (1/2)" by (simp add: evalSF_contraction_half_lm) lemma evalT_and_evalF_contraction_half: "[| nohide P ; guard P |] ==> (contraction_alpha [[P]]T (1/2) & contraction_alpha [[P]]F (1/2))" apply (simp add: contraction_alpha_evalSF_decompo[THEN sym]) by (simp add: evalSF_contraction_half) lemma evalT_contraction_half: "[| nohide P ; guard P |] ==> contraction_alpha [[P]]T (1/2)" by (simp add: evalT_and_evalF_contraction_half) lemma evalF_contraction_half: "[| nohide P ; guard P |] ==> contraction_alpha [[P]]F (1/2)" by (simp add: evalT_and_evalF_contraction_half) (*------------------------------------------------------* | Banach theorem for procDF | *------------------------------------------------------*) (************************ non-expanding evalDF ************************) lemma evalDF_non_expanding: "(ALL C. nohide (df C)) ==> non_expanding [[df]]DF" apply (simp add: prod_non_expand) apply (simp add: proj_fun_evalDF) apply (rule allI) apply (drule_tac x="i" in spec) apply (simp add: evalSF_non_expanding) done (*************************** contraction_half evalDF ***************************) lemma evalDF_contraction_half: "(ALL C. nohide (df C) & guard (df C)) ==> contraction_alpha [[df]]DF (1/2)" apply (simp add: prod_contra_alpha) apply (simp add: proj_fun_evalDF) apply (rule allI) apply (drule_tac x="i" in spec) apply (simp add: evalSF_contraction_half) done (*************************** contraction evalDF ***************************) lemma evalDF_contraction: "(ALL C. nohide (df C) & guard (df C)) ==> contraction [[df]]DF" apply (simp add: contraction_def) apply (rule_tac x="1/2" in exI) apply (simp add: evalDF_contraction_half) done (************************ Banach evalDF ************************) lemma evalDF_Banach_thm: "(ALL C. nohide (df C) & guard (df C)) ==> [[df]]DF hasUFP & (%n. ([[df]]DF^n) x0) convergeTo UFP [[df]]DF" apply (rule Banach_thm) apply (simp add: evalDF_contraction) done (*------------------------------------------------------* | Fixed Point Induction procDF | *------------------------------------------------------*) lemma evalDF_constructive_rs: "(ALL C. nohide (df C) & guard (df C)) ==> constructive_rs [[df]]DF" by (simp add: contra_alpha_to_contst evalDF_contraction_half) (****************** to add them again ******************) declare Union_image_eq [simp] declare Inter_image_eq [simp] declare split_paired_All [simp] declare split_paired_Ex [simp] declare not_None_eq [simp] end
lemma proc_rest_subsetSF_decompo:
([[P]]SF ev1 rest n ≤ [[Q]]SF ev2 rest n) = ([[P]]T ev1 rest n ≤ [[Q]]T ev2 rest n ∧ [[P]]F ev1 rest n ≤ [[Q]]F ev2 rest n)
lemma proc_rest_subsetT_decompo:
[[P]]SF ev1 rest n ≤ [[Q]]SF ev2 rest n ==> [[P]]T ev1 rest n ≤ [[Q]]T ev2 rest n
lemma proc_rest_subsetF_decompo:
[[P]]SF ev1 rest n ≤ [[Q]]SF ev2 rest n ==> [[P]]F ev1 rest n ≤ [[Q]]F ev2 rest n
lemma proc_rest_eqSF_decompo:
([[P]]SF ev1 rest n = [[Q]]SF ev2 rest n) = ([[P]]T ev1 rest n = [[Q]]T ev2 rest n ∧ [[P]]F ev1 rest n = [[Q]]F ev2 rest n)
lemma proc_rest_eqT_decompo:
[[P]]SF ev1 rest n = [[Q]]SF ev2 rest n ==> [[P]]T ev1 rest n = [[Q]]T ev2 rest n
lemma proc_rest_eqF_decompo:
[[P]]SF ev1 rest n = [[Q]]SF ev2 rest n ==> [[P]]F ev1 rest n = [[Q]]F ev2 rest n
lemma map_alpha_Abs_domSF:
map_alpha [[P]]SF alpha = map_alpha ([[P]]T ** [[P]]F) alpha
lemma map_alpha_evalSF_decompo:
map_alpha [[P]]SF alpha = (map_alpha [[P]]T alpha ∧ map_alpha [[P]]F alpha)
lemma non_expanding_evalSF_decompo:
non_expanding [[P]]SF = (non_expanding [[P]]T ∧ non_expanding [[P]]F)
lemma contraction_alpha_evalSF_decompo:
contraction_alpha [[P]]SF alpha = (contraction_alpha [[P]]T alpha ∧ contraction_alpha [[P]]F alpha)
lemma evalSF_non_expanding_lm:
∀P. nohide P --> non_expanding [[P]]SF
lemma evalSF_non_expanding:
nohide P ==> non_expanding [[P]]SF
lemma evalT_and_evalF_non_expanding:
nohide P ==> non_expanding [[P]]T ∧ non_expanding [[P]]F
lemma evalT_non_expanding:
nohide P ==> non_expanding [[P]]T
lemma evalF_non_expanding:
nohide P ==> non_expanding [[P]]F
lemma evalSF_contraction_half_lm:
∀P. nohide P ∧ guard P --> contraction_alpha [[P]]SF (1 / 2)
lemma evalSF_contraction_half:
[| nohide P; guard P |] ==> contraction_alpha [[P]]SF (1 / 2)
lemma evalT_and_evalF_contraction_half:
[| nohide P; guard P |] ==> contraction_alpha [[P]]T (1 / 2) ∧ contraction_alpha [[P]]F (1 / 2)
lemma evalT_contraction_half:
[| nohide P; guard P |] ==> contraction_alpha [[P]]T (1 / 2)
lemma evalF_contraction_half:
[| nohide P; guard P |] ==> contraction_alpha [[P]]F (1 / 2)
lemma evalDF_non_expanding:
∀C. nohide (df C) ==> non_expanding [[df]]DF
lemma evalDF_contraction_half:
∀C. nohide (df C) ∧ guard (df C) ==> contraction_alpha [[df]]DF (1 / 2)
lemma evalDF_contraction:
∀C. nohide (df C) ∧ guard (df C) ==> contraction [[df]]DF
lemma evalDF_Banach_thm:
∀C. nohide (df C) ∧ guard (df C) ==> [[df]]DF hasUFP ∧ (%n. ([[df]]DF ^ n) x0) convergeTo UFP [[df]]DF
lemma evalDF_constructive_rs:
∀C. nohide (df C) ∧ guard (df C) ==> constructive_rs [[df]]DF