Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory Act_prefix_cpo = Act_prefix + Domain_SF_prod_cpo: (*-------------------------------------------*
| CSP-Prover |
| December 2004 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory Act_prefix_cpo = Act_prefix + Domain_SF_prod_cpo:
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare disj_not1 [simp del]
(* The following simplification is sometimes unexpected. *)
(* *)
(* not_None_eq: (x ~= None) = (EX y. x = Some y) *)
declare not_None_eq [simp del]
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* Union (B ` A) = (UN x:A. B x) *)
(* Inter (B ` A) = (INT x:A. B x) *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare Union_image_eq [simp del]
declare Inter_image_eq [simp del]
(*****************************************************************
1. [[a -> P]]T : continuous
2. [[a -> P]]F : continuous
3.
4.
*****************************************************************)
(*** Act_prefix_evalT_continuous ***)
lemma Act_prefix_evalT_continuous:
"continuous [[P]]T ==> continuous [[a -> P]]T"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule eq_iffI)
(* <= *)
apply (rule)
apply (simp add: memT_UnionT)
apply (simp only: Act_prefix_mem)
apply (erule disjE, fast)
apply (elim conjE exE)
apply (simp add: memT_UnionT)
apply (erule bexE)
apply (rule_tac x="xa" in bexI)
apply (rule_tac x="s" in exI, simp)
apply (simp)
(* => *)
apply (rule)
apply (simp add: memT_UnionT)
apply (erule bexE)
apply (simp add: Act_prefix_mem)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (rule disjI2)
apply (rule_tac x="s" in exI, simp)
apply (simp add: memT_UnionT)
apply (rule_tac x="xa" in bexI)
apply (simp_all)
by (simp add: directed_def)
(*** Act_prefix_evalF_continuous ***)
lemma Act_prefix_evalF_continuous:
"continuous [[P]]F ==> continuous [[a -> P]]F"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionF)
apply (rule eq_iffI)
(* <= *)
apply (rule)
apply (simp add: memF_UnionF)
apply (simp add: Act_prefix_mem)
apply (erule disjE, fast)
apply (elim conjE exE)
apply (simp add: memF_UnionF)
apply (erule bexE)
apply (rule_tac x="xa" in bexI)
apply (rule_tac x="sa" in exI, simp)
apply (simp)
(* => *)
apply (rule)
apply (simp add: memF_UnionF)
apply (erule bexE)
apply (simp add: Act_prefix_mem)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (rule disjI2)
apply (rule_tac x="sa" in exI, simp)
apply (simp add: memF_UnionF)
apply (rule_tac x="xa" in bexI)
apply (simp_all)
by (simp add: directed_def)
(****************** to add them again ******************)
declare Union_image_eq [simp]
declare Inter_image_eq [simp]
declare disj_not1 [simp]
declare not_None_eq [simp]
end
lemma Act_prefix_evalT_continuous:
continuous [[P]]T ==> continuous [[a -> P]]T
lemma Act_prefix_evalF_continuous:
continuous [[P]]F ==> continuous [[a -> P]]F