Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory Act_prefix = CSP_semantics: (*-------------------------------------------*
| CSP-Prover |
| December 2004 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory Act_prefix = CSP_semantics:
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare disj_not1 [simp del]
(* The following simplification is sometimes unexpected. *)
(* *)
(* not_None_eq: (x ~= None) = (EX y. x = Some y) *)
declare not_None_eq [simp del]
(*********************************************************
DomT
*********************************************************)
(*** Act_prefix_domT ***)
lemma Act_prefix_domT:
"{t. t = []t | (EX s. t = [Ev a]t @t s & s :t [[P]]T ev)} : domT"
apply (simp add: domT_def HC_T1_def)
apply (rule conjI)
apply (rule_tac x="[]t" in exI, simp)
apply (simp add: prefix_closed_def)
apply (intro allI impI)
apply (elim conjE exE)
apply (erule disjE, simp) (* []t *)
apply (elim conjE exE, simp)
apply (erule disjE, simp) (* None --> contradict *)
apply (erule disjE, simp) (* []t *)
apply (elim conjE exE, simp)
apply (rule_tac x="v'" in exI, simp)
apply (rule memT_prefix_closed)
by (simp_all)
(*** Act_prefix_memT ***)
lemma Act_prefix_memT:
"(t :t [[a -> P]]T ev) = (t = []t | (EX s. t = [Ev a]t @t s & s :t [[P]]T ev))"
apply (simp add: evalT_def)
by (simp add: memT_def Abs_domT_inverse Act_prefix_domT[simplified memT_def])
(*********************************************************
DomF
*********************************************************)
(*** Act_prefix_domF ***)
lemma Act_prefix_domF:
"{f. (EX X. f = ([]t,X) & Ev a ~: X) |
(EX s X. f = ([Ev a]t @t s, X) & (s,X) :f [[P]]F ev) } : domF"
apply (simp add: domF_def HC_F2_def)
apply (intro allI impI)
apply (elim conjE disjE, force)
apply (elim conjE exE, simp)
apply (rule_tac x="sa" in exI, simp)
apply (rule memF_F2, simp_all)
done
(*** Act_prefix_memT ***)
lemma Act_prefix_memF:
"(f :f [[a -> P]]F ev) = ((EX X. f = ([]t,X) & Ev a ~: X) |
(EX s X. f = ([Ev a]t @t s, X) & (s,X) :f [[P]]F ev))"
apply (simp add: evalF_def)
by (simp add: memF_def Abs_domF_inverse Act_prefix_domF[simplified memF_def])
lemmas Act_prefix_mem = Act_prefix_memT Act_prefix_memF
(*******************************
domSF
*******************************)
(* T2 *)
lemma Act_prefix_T2 :
"([[P]]T ev, [[P]]F ev) : domSF ==> HC_T2 ([[a -> P]]T ev, [[a -> P]]F ev)"
apply (simp add: HC_T2_def Act_prefix_mem)
apply (intro allI impI)
apply (elim conjE exE, simp)
apply (rule_tac x="sa" in exI, simp)
apply (simp add: domSF_def HC_T2_def)
apply (elim conjE)
apply (drule_tac x="sa" in spec)
by (force)
(* F3 *)
lemma Act_prefix_F3 :
"([[P]]T ev, [[P]]F ev) : domSF ==> HC_F3 ([[a -> P]]T ev, [[a -> P]]F ev)"
apply (simp add: HC_F3_def Act_prefix_mem)
apply (intro allI impI)
apply (elim conjE disjE, simp)
apply (case_tac "Ev a ~: Y", simp) (* show "Ev a : Y --> contradict" *)
apply (drule_tac x="Ev a" in spec, simp)
apply (drule_tac x="[]t" in spec, simp)
apply (elim conjE exE, simp)
apply (rule_tac x="sa" in exI, simp)
apply (simp add: domSF_def HC_F3_def)
apply (elim conjE)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="X" in spec)
apply (drule_tac x="Y" in spec)
apply (simp)
apply (drule mp)
apply (intro allI impI)
apply (drule_tac x="aa" in spec, simp)
apply (drule_tac x="sa @t [aa]t" in spec, simp)
by (simp)
(* T3_F4 *)
lemma Act_prefix_T3_F4 :
"([[P]]T ev, [[P]]F ev) : domSF ==> HC_T3_F4 ([[a -> P]]T ev, [[a -> P]]F ev)"
apply (simp add: HC_T3_F4_def Act_prefix_mem)
apply (intro allI impI)
apply (elim conjE exE)
apply (insert trace_nil_or_Tick_or_Ev)
apply (drule_tac x="s" in spec)
apply (simp add: not_None)
apply (erule disjE, simp) (* s = []t --> contradict *)
apply (erule disjE, simp) (* s = [Tick]t --> contradict *)
apply (elim conjE exE) (* s = [Ev a]t @t sb *)
apply (simp add: not_None)
apply (simp add: domSF_iff HC_T3_F4_def)
apply (elim conjE exE)
apply (drule_tac x="sb" in spec)
by (simp)
(*** Act_prefix_domSF ***)
lemma Act_prefix_domSF :
"([[P]]T ev, [[P]]F ev) : domSF ==> ([[a -> P]]T ev, [[a -> P]]F ev) : domSF"
apply (simp (no_asm) add: domSF_iff)
apply (simp add: Act_prefix_T2)
apply (simp add: Act_prefix_F3)
apply (simp add: Act_prefix_T3_F4)
done
(*********************************************************
mono
*********************************************************)
(*** T ***)
lemma Act_prefix_evalT_mono:
"[[P]]T ev1 <= [[Q]]T ev2 ==> [[a -> P]]T ev1 <= [[a -> Q]]T ev2"
apply (simp add: subsetT_iff)
apply (intro allI impI)
apply (simp add: Act_prefix_memT)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (drule_tac x="s" in spec)
apply (simp)
apply (rule_tac x="s" in exI)
by (simp)
(*** F ***)
lemma Act_prefix_evalF_mono:
"[[P]]F ev1 <= [[Q]]F ev2 ==> [[a -> P]]F ev1 <= [[a -> Q]]F ev2"
apply (simp add: subsetF_iff)
apply (intro allI impI)
apply (simp add: Act_prefix_memF)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="X" in spec)
apply (simp)
apply (rule_tac x="sa" in exI)
by (simp)
(****************** to add them again ******************)
declare disj_not1 [simp]
declare not_None_eq [simp]
end
lemma Act_prefix_domT:
{t. t = []t ∨ (∃s. t = [Ev a]t @t s ∧ s :t [[P]]T ev)} ∈ domT
lemma Act_prefix_memT:
(t :t [[a -> P]]T ev) = (t = []t ∨ (∃s. t = [Ev a]t @t s ∧ s :t [[P]]T ev))
lemma Act_prefix_domF:
{f. (∃X. f = ([]t, X) ∧ Ev a ∉ X) ∨
(∃s X. f = ([Ev a]t @t s, X) ∧ (s, X) :f [[P]]F ev)}
∈ domF
lemma Act_prefix_memF:
(f :f [[a -> P]]F ev) = ((∃X. f = ([]t, X) ∧ Ev a ∉ X) ∨ (∃s X. f = ([Ev a]t @t s, X) ∧ (s, X) :f [[P]]F ev))
lemmas Act_prefix_mem:
(t :t [[a -> P]]T ev) = (t = []t ∨ (∃s. t = [Ev a]t @t s ∧ s :t [[P]]T ev))
(f :f [[a -> P]]F ev) = ((∃X. f = ([]t, X) ∧ Ev a ∉ X) ∨ (∃s X. f = ([Ev a]t @t s, X) ∧ (s, X) :f [[P]]F ev))
lemma Act_prefix_T2:
([[P]]T ev, [[P]]F ev) ∈ domSF ==> HC_T2 ([[a -> P]]T ev, [[a -> P]]F ev)
lemma Act_prefix_F3:
([[P]]T ev, [[P]]F ev) ∈ domSF ==> HC_F3 ([[a -> P]]T ev, [[a -> P]]F ev)
lemma Act_prefix_T3_F4:
([[P]]T ev, [[P]]F ev) ∈ domSF ==> HC_T3_F4 ([[a -> P]]T ev, [[a -> P]]F ev)
lemma Act_prefix_domSF:
([[P]]T ev, [[P]]F ev) ∈ domSF ==> ([[a -> P]]T ev, [[a -> P]]F ev) ∈ domSF
lemma Act_prefix_evalT_mono:
[[P]]T ev1 ≤ [[Q]]T ev2 ==> [[a -> P]]T ev1 ≤ [[a -> Q]]T ev2
lemma Act_prefix_evalF_mono:
[[P]]F ev1 ≤ [[Q]]F ev2 ==> [[a -> P]]F ev1 ≤ [[a -> Q]]F ev2