Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory STOP_cms = STOP + Domain_SF_prod_cms:(*-------------------------------------------* | CSP-Prover | | December 2004 | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory STOP_cms = STOP + Domain_SF_prod_cms: (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare disj_not1 [simp del] (* The following simplification is sometimes unexpected. *) (* *) (* not_None_eq: (x ~= None) = (EX y. x = Some y) *) declare not_None_eq [simp del] (***************************************************************** 1. [[STOP]]T : map 2. [[STOP]]F : map 3. 4. *****************************************************************) (********************************************************* map STOP T *********************************************************) (*** restT (subset) ***) lemma STOP_evalT_map_alpha: "0 <= alpha ==> map_alpha [[STOP]]T alpha" apply (simp add: map_alpha_def) apply (simp add: evalT_def) apply (simp add: real_mult_order_eq) done (*** STOP_evalT_non_expanding ***) lemma STOP_evalT_non_expanding: "non_expanding [[STOP]]T" by (simp add: non_expanding_def STOP_evalT_map_alpha) (*** STOP_evalT_contraction_alpha ***) lemma STOP_evalT_contraction_alpha: "[| 0 <= alpha ; alpha < 1 |] ==> contraction_alpha [[STOP]]T alpha" by (simp add: contraction_alpha_def STOP_evalT_map_alpha) (********************************************************* map STOP F *********************************************************) (*** restF (subset) ***) lemma STOP_evalF_map_alpha: "0 <= alpha ==> map_alpha [[STOP]]F alpha" apply (simp add: map_alpha_def) apply (simp add: evalF_def) apply (simp add: real_mult_order_eq) done (*** STOP_evalF_non_expanding ***) lemma STOP_evalF_non_expanding: "non_expanding [[STOP]]F" by (simp add: non_expanding_def STOP_evalF_map_alpha) (*** STOP_evalF_contraction_alpha ***) lemma STOP_evalF_contraction_alpha: "[| 0 <= alpha ; alpha < 1 |] ==> contraction_alpha [[STOP]]F alpha" by (simp add: contraction_alpha_def STOP_evalF_map_alpha) (****************** to add them again ******************) declare disj_not1 [simp] declare not_None_eq [simp] end
lemma STOP_evalT_map_alpha:
0 ≤ alpha ==> map_alpha [[STOP]]T alpha
lemma STOP_evalT_non_expanding:
non_expanding [[STOP]]T
lemma STOP_evalT_contraction_alpha:
[| 0 ≤ alpha; alpha < 1 |] ==> contraction_alpha [[STOP]]T alpha
lemma STOP_evalF_map_alpha:
0 ≤ alpha ==> map_alpha [[STOP]]F alpha
lemma STOP_evalF_non_expanding:
non_expanding [[STOP]]F
lemma STOP_evalF_contraction_alpha:
[| 0 ≤ alpha; alpha < 1 |] ==> contraction_alpha [[STOP]]F alpha