Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_law_ref (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| December 2004 |
| June 2005 (modified) |
| September 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| November 2005 (modified) |
| March 2007 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_F_law_ref
imports CSP_F_law_basic CSP_T_law_ref
begin
(*****************************************************************
1. rules for refinement
*****************************************************************)
(*-------------------------------------------------------*
| decompose Internal choice |
*-------------------------------------------------------*)
(*** or <= ***) (* unsafe *)
lemma cspF_Int_choice_left1:
"P1 <=F[M1,M2] Q ==> P1 |~| P2 <=F[M1,M2] Q"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_Int_choice_left1)
apply (rule, simp add: in_failures)
apply (force)
done
lemma cspF_Int_choice_left2:
"P2 <=F[M1,M2] Q ==> P1 |~| P2 <=F[M1,M2] Q"
apply (rule cspF_rw_left)
apply (rule cspF_commut)
by (simp add: cspF_Int_choice_left1)
(*** <= and ***) (* safe *)
lemma cspF_Int_choice_right:
"[| P <=F[M1,M2] Q1 ; P <=F[M1,M2] Q2 |]
==> P <=F[M1,M2] Q1 |~| Q2"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_Int_choice_right)
apply (rule, simp add: in_failures)
apply (force)
done
(*-------------------------------------------------------*
| decompose Replicated internal choice |
*-------------------------------------------------------*)
(*** EX <= ***) (* unsafe *)
lemma cspF_Rep_int_choice_nat_left:
"(EX n. n:N & Pf n <=F[M1,M2] Q)
==> !nat :N .. Pf <=F[M1,M2] Q"
apply (simp add: cspF_cspT_semantics)
apply (rule conjI)
apply (rule cspT_Rep_int_choice_left)
apply (fast)
apply (rule, simp add: in_failures)
apply (force)
done
lemma cspF_Rep_int_choice_nat_left_x:
"[| n:N ; Pf n <=F[M1,M2] Q |]
==> !nat :N .. Pf <=F[M1,M2] Q"
apply (rule cspF_Rep_int_choice_nat_left)
by (fast)
lemma cspF_Rep_int_choice_set_left:
"(EX X. X:Xs & Pf X <=F[M1,M2] Q)
==> !set :Xs .. Pf <=F[M1,M2] Q"
apply (simp add: cspF_cspT_semantics)
apply (rule conjI)
apply (rule cspT_Rep_int_choice_left)
apply (fast)
apply (rule, simp add: in_failures)
apply (force)
done
lemma cspF_Rep_int_choice_set_left_x:
"[| X:Xs ; Pf X <=F[M1,M2] Q |]
==> !set :Xs .. Pf <=F[M1,M2] Q"
apply (rule cspF_Rep_int_choice_set_left)
by (fast)
lemma cspF_Rep_int_choice_com_left:
"(EX a. a:X & Pf a <=F[M1,M2] Q)
==> ! :X .. Pf <=F[M1,M2] Q"
apply (simp add: Rep_int_choice_com_def)
apply (rule cspF_Rep_int_choice_set_left)
apply (erule exE)
apply (rule_tac x="{a}" in exI)
apply (auto)
done
lemma cspF_Rep_int_choice_com_left_x:
"[| a:X ; Pf a <=F[M1,M2] Q |]
==> ! :X .. Pf <=F[M1,M2] Q"
apply (rule cspF_Rep_int_choice_com_left)
by (fast)
lemma cspF_Rep_int_choice_f_left:
"[| inj f ; (EX a. a:X & Pf a <=F[M1,M2] Q) |]
==> !<f> :X .. Pf <=F[M1,M2] Q"
apply (simp add: Rep_int_choice_f_def)
apply (rule cspF_Rep_int_choice_com_left)
apply (erule exE)
apply (rule_tac x="f a" in exI)
apply (auto)
done
lemma cspF_Rep_int_choice_f_left_x:
"[| inj f ; a:X ; Pf a <=F[M1,M2] Q |]
==> !<f> :X .. Pf <=F[M1,M2] Q"
apply (rule cspF_Rep_int_choice_f_left)
apply (simp)
by (fast)
lemmas cspF_Rep_int_choice_left = cspF_Rep_int_choice_nat_left
cspF_Rep_int_choice_set_left
cspF_Rep_int_choice_com_left
cspF_Rep_int_choice_f_left
lemmas cspF_Rep_int_choice_left_x = cspF_Rep_int_choice_nat_left_x
cspF_Rep_int_choice_set_left_x
cspF_Rep_int_choice_com_left_x
cspF_Rep_int_choice_f_left_x
(*** <= ALL ***) (* safe *)
lemma cspF_Rep_int_choice_nat_right:
"[| !!n. n:N ==> P <=F[M1,M2] Qf n |]
==> P <=F[M1,M2] !nat :N .. Qf"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_Rep_int_choice_right)
apply (rule, simp add: in_failures)
apply (force)
done
lemma cspF_Rep_int_choice_set_right:
"[| !!X. X:Xs ==> P <=F[M1,M2] Qf X |]
==> P <=F[M1,M2] !set :Xs .. Qf"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_Rep_int_choice_right)
apply (rule, simp add: in_failures)
apply (force)
done
lemma cspF_Rep_int_choice_com_right:
"[| !!a. a:X ==> P <=F[M1,M2] Qf a |]
==> P <=F[M1,M2] ! :X .. Qf"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_Rep_int_choice_right)
apply (rule, simp add: in_failures)
apply (force)
done
lemma cspF_Rep_int_choice_f_right:
"[| inj f ; !!a. a:X ==> P <=F[M1,M2] Qf a |]
==> P <=F[M1,M2] !<f> :X .. Qf"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_Rep_int_choice_right)
apply (rule, simp add: in_failures)
apply (force)
done
lemmas cspF_Rep_int_choice_right
= cspF_Rep_int_choice_nat_right
cspF_Rep_int_choice_set_right
cspF_Rep_int_choice_com_right
cspF_Rep_int_choice_f_right
(* 1,2,3,f E *)
lemma cspF_Rep_int_choice_nat_rightE:
"[| P <=F[M1,M2] !nat :N .. Qf ;
ALL n:N. P <=F[M1,M2] Qf n ==> R
|] ==> R"
apply (simp add: cspF_cspT_semantics)
apply (elim conjE exE)
apply (erule cspT_Rep_int_choice_rightE)
apply (simp add: subsetF_iff)
apply (simp add: in_failures)
apply (force)
done
lemma cspF_Rep_int_choice_set_rightE:
"[| P <=F[M1,M2] !set :Xs .. Qf ;
ALL X:Xs. P <=F[M1,M2] Qf X ==> R
|] ==> R"
apply (simp add: cspF_cspT_semantics)
apply (elim conjE exE)
apply (erule cspT_Rep_int_choice_rightE)
apply (simp add: subsetF_iff)
apply (simp add: in_failures)
apply (force)
done
lemma cspF_Rep_int_choice_com_rightE:
"[| P <=F[M1,M2] ! :X .. Qf ;
ALL a:X. P <=F[M1,M2] Qf a ==> R
|] ==> R"
apply (simp add: cspF_cspT_semantics)
apply (elim conjE exE)
apply (erule cspT_Rep_int_choice_rightE)
apply (simp add: subsetF_iff)
apply (simp add: in_failures)
apply (force)
done
lemma cspF_Rep_int_choice_f_rightE:
"[| P <=F[M1,M2] !<f> :X .. Qf ; inj f ;
[| ALL a:X. P <=F[M1,M2] Qf a |] ==> R
|] ==> R"
apply (simp add: cspF_cspT_semantics)
apply (elim conjE exE)
apply (erule cspT_Rep_int_choice_rightE)
apply (simp)
apply (simp add: subsetF_iff)
apply (simp add: in_failures)
apply (force)
done
lemmas cspF_Rep_int_choice_rightE =
cspF_Rep_int_choice_nat_rightE
cspF_Rep_int_choice_set_rightE
cspF_Rep_int_choice_com_rightE
cspF_Rep_int_choice_f_rightE
(*-------------------------------------------------------*
| decomposition with subset |
*-------------------------------------------------------*)
lemma cspF_Rep_int_choice_nat_subset:
"[| N2 <= N1 ; !!n. n:N2 ==> Pf n <=F[M1,M2] Qf n |]
==> !nat :N1 .. Pf <=F[M1,M2] !nat :N2 .. Qf"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_Rep_int_choice_subset)
apply (rule, simp add: in_failures)
apply (force)
done
lemma cspF_Rep_int_choice_set_subset:
"[| Ys <= Xs ; !!X. X:Ys ==> Pf X <=F[M1,M2] Qf X |]
==> !set :Xs .. Pf <=F[M1,M2] !set :Ys .. Qf"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_Rep_int_choice_subset)
apply (rule, simp add: in_failures)
apply (force)
done
lemma cspF_Rep_int_choice_com_subset:
"[| Y <= X ; !!a. a:Y ==> Pf a <=F[M1,M2] Qf a |]
==> ! :X .. Pf <=F[M1,M2] ! :Y .. Qf"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_Rep_int_choice_subset)
apply (rule, simp add: in_failures)
apply (force)
done
lemma cspF_Rep_int_choice_f_subset:
"[| inj f ; Y <= X ; !!a. a:Y ==> Pf a <=F[M1,M2] Qf a |]
==> !<f> :X .. Pf <=F[M1,M2] !<f> :Y .. Qf"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_Rep_int_choice_subset)
apply (rule, simp add: in_failures)
apply (force)
done
lemmas cspF_Rep_int_choice_subset
= cspF_Rep_int_choice_nat_subset
cspF_Rep_int_choice_set_subset
cspF_Rep_int_choice_com_subset
cspF_Rep_int_choice_f_subset
(*** ! x:X .. and ? -> ***)
lemma cspF_Int_Ext_pre_choice_subset:
"[| Y ~={} ; Y <= X ; !!a. a:Y ==> Pf a <=F[M1,M2] Qf a |]
==> ! x:X .. (x -> Pf x) <=F[M1,M2]
? :Y -> Qf"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_Int_Ext_pre_choice_subset)
apply (rule, simp add: in_failures)
apply (force)
done
lemmas cspF_decompo_subset = cspF_Rep_int_choice_subset
cspF_Int_Ext_pre_choice_subset
(*-------------------------------------------------------*
| decompose external choice |
*-------------------------------------------------------*)
lemma cspF_Ext_choice_right:
"[| P <=F[M1,M2] Q1 ;
P <=F[M1,M2] Q2 |]
==> P <=F[M1,M2] Q1 [+] Q2"
apply (simp add: cspF_cspT_semantics)
apply (simp add: cspT_Ext_choice_right)
apply (rule)
apply (simp add: in_failures)
apply (elim disjE conjE exE, simp)
apply (force, force, force)
apply (simp_all)
apply (subgoal_tac "(<>, X) :f failures(Q1) M2")
apply (force)
apply (rule proc_F2_F4)
apply (simp_all)
apply (rule proc_F2_F4)
apply (simp_all)
apply (simp add: cspT_semantics)
apply (auto)
done
end
lemma cspF_Int_choice_left1:
P1.0 <=F[M1.0,M2.0] Q ==> P1.0 |~| P2.0 <=F[M1.0,M2.0] Q
lemma cspF_Int_choice_left2:
P2.0 <=F[M1.0,M2.0] Q ==> P1.0 |~| P2.0 <=F[M1.0,M2.0] Q
lemma cspF_Int_choice_right:
[| P <=F[M1.0,M2.0] Q1.0; P <=F[M1.0,M2.0] Q2.0 |] ==> P <=F[M1.0,M2.0] Q1.0 |~| Q2.0
lemma cspF_Rep_int_choice_nat_left:
∃n. n ∈ N ∧ Pf n <=F[M1.0,M2.0] Q ==> !nat :N .. Pf <=F[M1.0,M2.0] Q
lemma cspF_Rep_int_choice_nat_left_x:
[| n ∈ N; Pf n <=F[M1.0,M2.0] Q |] ==> !nat :N .. Pf <=F[M1.0,M2.0] Q
lemma cspF_Rep_int_choice_set_left:
∃X. X ∈ Xs ∧ Pf X <=F[M1.0,M2.0] Q ==> !set :Xs .. Pf <=F[M1.0,M2.0] Q
lemma cspF_Rep_int_choice_set_left_x:
[| X ∈ Xs; Pf X <=F[M1.0,M2.0] Q |] ==> !set :Xs .. Pf <=F[M1.0,M2.0] Q
lemma cspF_Rep_int_choice_com_left:
∃a. a ∈ X ∧ Pf a <=F[M1.0,M2.0] Q ==> ! :X .. Pf <=F[M1.0,M2.0] Q
lemma cspF_Rep_int_choice_com_left_x:
[| a ∈ X; Pf a <=F[M1.0,M2.0] Q |] ==> ! :X .. Pf <=F[M1.0,M2.0] Q
lemma cspF_Rep_int_choice_f_left:
[| inj f; ∃a. a ∈ X ∧ Pf a <=F[M1.0,M2.0] Q |] ==> !<f> :X .. Pf <=F[M1.0,M2.0] Q
lemma cspF_Rep_int_choice_f_left_x:
[| inj f; a ∈ X; Pf a <=F[M1.0,M2.0] Q |] ==> !<f> :X .. Pf <=F[M1.0,M2.0] Q
lemmas cspF_Rep_int_choice_left:
∃n. n ∈ N ∧ Pf n <=F[M1.0,M2.0] Q ==> !nat :N .. Pf <=F[M1.0,M2.0] Q
∃X. X ∈ Xs ∧ Pf X <=F[M1.0,M2.0] Q ==> !set :Xs .. Pf <=F[M1.0,M2.0] Q
∃a. a ∈ X ∧ Pf a <=F[M1.0,M2.0] Q ==> ! :X .. Pf <=F[M1.0,M2.0] Q
[| inj f; ∃a. a ∈ X ∧ Pf a <=F[M1.0,M2.0] Q |] ==> !<f> :X .. Pf <=F[M1.0,M2.0] Q
lemmas cspF_Rep_int_choice_left:
∃n. n ∈ N ∧ Pf n <=F[M1.0,M2.0] Q ==> !nat :N .. Pf <=F[M1.0,M2.0] Q
∃X. X ∈ Xs ∧ Pf X <=F[M1.0,M2.0] Q ==> !set :Xs .. Pf <=F[M1.0,M2.0] Q
∃a. a ∈ X ∧ Pf a <=F[M1.0,M2.0] Q ==> ! :X .. Pf <=F[M1.0,M2.0] Q
[| inj f; ∃a. a ∈ X ∧ Pf a <=F[M1.0,M2.0] Q |] ==> !<f> :X .. Pf <=F[M1.0,M2.0] Q
lemmas cspF_Rep_int_choice_left_x:
[| n ∈ N; Pf n <=F[M1.0,M2.0] Q |] ==> !nat :N .. Pf <=F[M1.0,M2.0] Q
[| X ∈ Xs; Pf X <=F[M1.0,M2.0] Q |] ==> !set :Xs .. Pf <=F[M1.0,M2.0] Q
[| a ∈ X; Pf a <=F[M1.0,M2.0] Q |] ==> ! :X .. Pf <=F[M1.0,M2.0] Q
[| inj f; a ∈ X; Pf a <=F[M1.0,M2.0] Q |] ==> !<f> :X .. Pf <=F[M1.0,M2.0] Q
lemmas cspF_Rep_int_choice_left_x:
[| n ∈ N; Pf n <=F[M1.0,M2.0] Q |] ==> !nat :N .. Pf <=F[M1.0,M2.0] Q
[| X ∈ Xs; Pf X <=F[M1.0,M2.0] Q |] ==> !set :Xs .. Pf <=F[M1.0,M2.0] Q
[| a ∈ X; Pf a <=F[M1.0,M2.0] Q |] ==> ! :X .. Pf <=F[M1.0,M2.0] Q
[| inj f; a ∈ X; Pf a <=F[M1.0,M2.0] Q |] ==> !<f> :X .. Pf <=F[M1.0,M2.0] Q
lemma cspF_Rep_int_choice_nat_right:
(!!n. n ∈ N ==> P <=F[M1.0,M2.0] Qf n) ==> P <=F[M1.0,M2.0] !nat :N .. Qf
lemma cspF_Rep_int_choice_set_right:
(!!X. X ∈ Xs ==> P <=F[M1.0,M2.0] Qf X) ==> P <=F[M1.0,M2.0] !set :Xs .. Qf
lemma cspF_Rep_int_choice_com_right:
(!!a. a ∈ X ==> P <=F[M1.0,M2.0] Qf a) ==> P <=F[M1.0,M2.0] ! :X .. Qf
lemma cspF_Rep_int_choice_f_right:
[| inj f; !!a. a ∈ X ==> P <=F[M1.0,M2.0] Qf a |] ==> P <=F[M1.0,M2.0] !<f> :X .. Qf
lemmas cspF_Rep_int_choice_right:
(!!n. n ∈ N ==> P <=F[M1.0,M2.0] Qf n) ==> P <=F[M1.0,M2.0] !nat :N .. Qf
(!!X. X ∈ Xs ==> P <=F[M1.0,M2.0] Qf X) ==> P <=F[M1.0,M2.0] !set :Xs .. Qf
(!!a. a ∈ X ==> P <=F[M1.0,M2.0] Qf a) ==> P <=F[M1.0,M2.0] ! :X .. Qf
[| inj f; !!a. a ∈ X ==> P <=F[M1.0,M2.0] Qf a |] ==> P <=F[M1.0,M2.0] !<f> :X .. Qf
lemmas cspF_Rep_int_choice_right:
(!!n. n ∈ N ==> P <=F[M1.0,M2.0] Qf n) ==> P <=F[M1.0,M2.0] !nat :N .. Qf
(!!X. X ∈ Xs ==> P <=F[M1.0,M2.0] Qf X) ==> P <=F[M1.0,M2.0] !set :Xs .. Qf
(!!a. a ∈ X ==> P <=F[M1.0,M2.0] Qf a) ==> P <=F[M1.0,M2.0] ! :X .. Qf
[| inj f; !!a. a ∈ X ==> P <=F[M1.0,M2.0] Qf a |] ==> P <=F[M1.0,M2.0] !<f> :X .. Qf
lemma cspF_Rep_int_choice_nat_rightE:
[| P <=F[M1.0,M2.0] !nat :N .. Qf; ∀n∈N. P <=F[M1.0,M2.0] Qf n ==> R |] ==> R
lemma cspF_Rep_int_choice_set_rightE:
[| P <=F[M1.0,M2.0] !set :Xs .. Qf; ∀X∈Xs. P <=F[M1.0,M2.0] Qf X ==> R |] ==> R
lemma cspF_Rep_int_choice_com_rightE:
[| P <=F[M1.0,M2.0] ! :X .. Qf; ∀a∈X. P <=F[M1.0,M2.0] Qf a ==> R |] ==> R
lemma cspF_Rep_int_choice_f_rightE:
[| P <=F[M1.0,M2.0] !<f> :X .. Qf; inj f; ∀a∈X. P <=F[M1.0,M2.0] Qf a ==> R |] ==> R
lemmas cspF_Rep_int_choice_rightE:
[| P <=F[M1.0,M2.0] !nat :N .. Qf; ∀n∈N. P <=F[M1.0,M2.0] Qf n ==> R |] ==> R
[| P <=F[M1.0,M2.0] !set :Xs .. Qf; ∀X∈Xs. P <=F[M1.0,M2.0] Qf X ==> R |] ==> R
[| P <=F[M1.0,M2.0] ! :X .. Qf; ∀a∈X. P <=F[M1.0,M2.0] Qf a ==> R |] ==> R
[| P <=F[M1.0,M2.0] !<f> :X .. Qf; inj f; ∀a∈X. P <=F[M1.0,M2.0] Qf a ==> R |] ==> R
lemmas cspF_Rep_int_choice_rightE:
[| P <=F[M1.0,M2.0] !nat :N .. Qf; ∀n∈N. P <=F[M1.0,M2.0] Qf n ==> R |] ==> R
[| P <=F[M1.0,M2.0] !set :Xs .. Qf; ∀X∈Xs. P <=F[M1.0,M2.0] Qf X ==> R |] ==> R
[| P <=F[M1.0,M2.0] ! :X .. Qf; ∀a∈X. P <=F[M1.0,M2.0] Qf a ==> R |] ==> R
[| P <=F[M1.0,M2.0] !<f> :X .. Qf; inj f; ∀a∈X. P <=F[M1.0,M2.0] Qf a ==> R |] ==> R
lemma cspF_Rep_int_choice_nat_subset:
[| N2.0 ⊆ N1.0; !!n. n ∈ N2.0 ==> Pf n <=F[M1.0,M2.0] Qf n |] ==> !nat :N1.0 .. Pf <=F[M1.0,M2.0] !nat :N2.0 .. Qf
lemma cspF_Rep_int_choice_set_subset:
[| Ys ⊆ Xs; !!X. X ∈ Ys ==> Pf X <=F[M1.0,M2.0] Qf X |] ==> !set :Xs .. Pf <=F[M1.0,M2.0] !set :Ys .. Qf
lemma cspF_Rep_int_choice_com_subset:
[| Y ⊆ X; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |] ==> ! :X .. Pf <=F[M1.0,M2.0] ! :Y .. Qf
lemma cspF_Rep_int_choice_f_subset:
[| inj f; Y ⊆ X; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |] ==> !<f> :X .. Pf <=F[M1.0,M2.0] !<f> :Y .. Qf
lemmas cspF_Rep_int_choice_subset:
[| N2.0 ⊆ N1.0; !!n. n ∈ N2.0 ==> Pf n <=F[M1.0,M2.0] Qf n |] ==> !nat :N1.0 .. Pf <=F[M1.0,M2.0] !nat :N2.0 .. Qf
[| Ys ⊆ Xs; !!X. X ∈ Ys ==> Pf X <=F[M1.0,M2.0] Qf X |] ==> !set :Xs .. Pf <=F[M1.0,M2.0] !set :Ys .. Qf
[| Y ⊆ X; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |] ==> ! :X .. Pf <=F[M1.0,M2.0] ! :Y .. Qf
[| inj f; Y ⊆ X; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |] ==> !<f> :X .. Pf <=F[M1.0,M2.0] !<f> :Y .. Qf
lemmas cspF_Rep_int_choice_subset:
[| N2.0 ⊆ N1.0; !!n. n ∈ N2.0 ==> Pf n <=F[M1.0,M2.0] Qf n |] ==> !nat :N1.0 .. Pf <=F[M1.0,M2.0] !nat :N2.0 .. Qf
[| Ys ⊆ Xs; !!X. X ∈ Ys ==> Pf X <=F[M1.0,M2.0] Qf X |] ==> !set :Xs .. Pf <=F[M1.0,M2.0] !set :Ys .. Qf
[| Y ⊆ X; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |] ==> ! :X .. Pf <=F[M1.0,M2.0] ! :Y .. Qf
[| inj f; Y ⊆ X; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |] ==> !<f> :X .. Pf <=F[M1.0,M2.0] !<f> :Y .. Qf
lemma cspF_Int_Ext_pre_choice_subset:
[| Y ≠ {}; Y ⊆ X; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |] ==> ! x:X .. x -> Pf x <=F[M1.0,M2.0] ? :Y -> Qf
lemmas cspF_decompo_subset:
[| N2.0 ⊆ N1.0; !!n. n ∈ N2.0 ==> Pf n <=F[M1.0,M2.0] Qf n |] ==> !nat :N1.0 .. Pf <=F[M1.0,M2.0] !nat :N2.0 .. Qf
[| Ys ⊆ Xs; !!X. X ∈ Ys ==> Pf X <=F[M1.0,M2.0] Qf X |] ==> !set :Xs .. Pf <=F[M1.0,M2.0] !set :Ys .. Qf
[| Y ⊆ X; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |] ==> ! :X .. Pf <=F[M1.0,M2.0] ! :Y .. Qf
[| inj f; Y ⊆ X; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |] ==> !<f> :X .. Pf <=F[M1.0,M2.0] !<f> :Y .. Qf
[| Y ≠ {}; Y ⊆ X; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |] ==> ! x:X .. x -> Pf x <=F[M1.0,M2.0] ? :Y -> Qf
lemmas cspF_decompo_subset:
[| N2.0 ⊆ N1.0; !!n. n ∈ N2.0 ==> Pf n <=F[M1.0,M2.0] Qf n |] ==> !nat :N1.0 .. Pf <=F[M1.0,M2.0] !nat :N2.0 .. Qf
[| Ys ⊆ Xs; !!X. X ∈ Ys ==> Pf X <=F[M1.0,M2.0] Qf X |] ==> !set :Xs .. Pf <=F[M1.0,M2.0] !set :Ys .. Qf
[| Y ⊆ X; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |] ==> ! :X .. Pf <=F[M1.0,M2.0] ! :Y .. Qf
[| inj f; Y ⊆ X; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |] ==> !<f> :X .. Pf <=F[M1.0,M2.0] !<f> :Y .. Qf
[| Y ≠ {}; Y ⊆ X; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |] ==> ! x:X .. x -> Pf x <=F[M1.0,M2.0] ? :Y -> Qf
lemma cspF_Ext_choice_right:
[| P <=F[M1.0,M2.0] Q1.0; P <=F[M1.0,M2.0] Q2.0 |] ==> P <=F[M1.0,M2.0] Q1.0 [+] Q2.0