Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_law (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| December 2004 |
| June 2005 (modified) |
| September 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| November 2005 (modified) |
| December 2005 (modified) |
| April 2006 (modified) |
| March 2007 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_F_law
imports CSP_F_law_SKIP CSP_F_law_ref
CSP_F_law_dist CSP_F_law_alpha_par
CSP_F_law_step CSP_F_law_rep_par
CSP_F_law_fix
CSP_F_law_DIV CSP_F_law_SKIP_DIV
CSP_F_law_step_ext CSP_F_law_norm
CSP_T_law
begin
(*********************************************************
SKIP , DIV and Internal choice
*********************************************************)
(*** |~| ***)
lemma cspF_SKIP_DIV_Int_choice:
"[| P = SKIP | P = DIV ; Q = SKIP | Q = DIV |] ==>
(P |~| Q) =F[M1,M2] (if (P = SKIP | Q = SKIP) then SKIP else DIV)"
apply (elim disjE)
apply (simp_all)
apply (rule cspF_rw_left)
apply (rule cspF_idem)
apply (rule cspF_reflex)
apply (rule cspF_rw_left)
apply (rule cspF_unit)
apply (rule cspF_reflex)
apply (rule cspF_rw_left)
apply (rule cspF_unit)
apply (rule cspF_reflex)
apply (rule cspF_rw_left)
apply (rule cspF_idem)
apply (rule cspF_reflex)
done
(*** !! ***)
lemma cspF_SKIP_DIV_Rep_int_choice_nat:
"[| ALL n:N. (Qf n = SKIP | Qf n = DIV) |] ==>
(!nat n:N .. Qf n) =F[M1,M2]
(if (EX n:N. Qf n = SKIP) then SKIP else DIV)"
apply (case_tac "N={}")
apply (simp add: cspF_Rep_int_choice_empty)
apply (case_tac "ALL n:N. Qf n = DIV")
apply (simp)
apply (rule cspF_rw_left)
apply (rule cspF_Rep_int_choice_const)
apply (simp)
apply (force)
apply (simp)
apply (simp)
apply (elim bexE)
apply (frule_tac x="n" in bspec)
apply (simp_all)
apply (intro conjI impI)
apply (rule cspF_rw_left)
apply (subgoal_tac
"!nat :N .. Qf =F[M1,M1] !nat :({n:N. Qf n = SKIP} Un {n:N. Qf n = DIV}) .. Qf")
apply (simp)
apply (rule cspF_decompo)
apply (force)
apply (simp)
apply (rule cspF_rw_left)
apply (rule cspF_Rep_int_choice_union_Int)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (rule cspF_Rep_int_choice_const)
apply (force)
apply (rule ballI)
apply (simp)
apply (case_tac "{n : N. Qf n = DIV}={}")
apply (simp (no_asm_simp))
apply (rule cspF_Rep_int_choice_DIV)
apply (rule cspF_rw_left)
apply (rule cspF_Rep_int_choice_const)
apply (simp_all)
apply (simp)
apply (rule cspF_rw_left)
apply (rule cspF_unit)
apply (simp)
done
lemma cspF_SKIP_DIV_Rep_int_choice_set:
"[| ALL X:Xs. (Qf X = SKIP | Qf X = DIV) |] ==>
(!set X:Xs .. Qf X) =F[M1,M2]
(if (EX X:Xs. Qf X = SKIP) then SKIP else DIV)"
apply (case_tac "Xs={}")
apply (simp add: cspF_Rep_int_choice_empty)
apply (case_tac "ALL X:Xs. Qf X = DIV")
apply (simp)
apply (rule cspF_rw_left)
apply (rule cspF_Rep_int_choice_const)
apply (simp)
apply (force)
apply (simp)
apply (simp)
apply (elim bexE)
apply (frule_tac x="X" in bspec)
apply (simp_all)
apply (intro conjI impI)
apply (rule cspF_rw_left)
apply (subgoal_tac
"!set :Xs .. Qf =F[M1,M1] !set :({X:Xs. Qf X = SKIP} Un {X:Xs. Qf X = DIV}) .. Qf")
apply (simp)
apply (rule cspF_decompo)
apply (force)
apply (simp)
apply (rule cspF_rw_left)
apply (rule cspF_Rep_int_choice_union_Int)
apply (rule cspF_rw_left)
apply (rule cspF_decompo)
apply (rule cspF_Rep_int_choice_const)
apply (force)
apply (rule ballI)
apply (simp)
apply (case_tac "{X : Xs. Qf X = DIV}={}")
apply (simp (no_asm_simp))
apply (rule cspF_Rep_int_choice_DIV)
apply (rule cspF_rw_left)
apply (rule cspF_Rep_int_choice_const)
apply (simp_all)
apply (simp)
apply (rule cspF_rw_left)
apply (rule cspF_unit)
apply (simp)
done
lemmas cspF_SKIP_DIV_Rep_int_choice =
cspF_SKIP_DIV_Rep_int_choice_nat
cspF_SKIP_DIV_Rep_int_choice_set
end
lemma cspF_SKIP_DIV_Int_choice:
[| P = SKIP ∨ P = DIV; Q = SKIP ∨ Q = DIV |] ==> P |~| Q =F[M1.0,M2.0] (if P = SKIP ∨ Q = SKIP then SKIP else DIV)
lemma cspF_SKIP_DIV_Rep_int_choice_nat:
∀n∈N. Qf n = SKIP ∨ Qf n = DIV ==> !nat :N .. Qf =F[M1.0,M2.0] (if ∃n∈N. Qf n = SKIP then SKIP else DIV)
lemma cspF_SKIP_DIV_Rep_int_choice_set:
∀X∈Xs. Qf X = SKIP ∨ Qf X = DIV ==> !set :Xs .. Qf =F[M1.0,M2.0] (if ∃X∈Xs. Qf X = SKIP then SKIP else DIV)
lemmas cspF_SKIP_DIV_Rep_int_choice:
∀n∈N. Qf n = SKIP ∨ Qf n = DIV ==> !nat :N .. Qf =F[M1.0,M2.0] (if ∃n∈N. Qf n = SKIP then SKIP else DIV)
∀X∈Xs. Qf X = SKIP ∨ Qf X = DIV ==> !set :Xs .. Qf =F[M1.0,M2.0] (if ∃X∈Xs. Qf X = SKIP then SKIP else DIV)
lemmas cspF_SKIP_DIV_Rep_int_choice:
∀n∈N. Qf n = SKIP ∨ Qf n = DIV ==> !nat :N .. Qf =F[M1.0,M2.0] (if ∃n∈N. Qf n = SKIP then SKIP else DIV)
∀X∈Xs. Qf X = SKIP ∨ Qf X = DIV ==> !set :Xs .. Qf =F[M1.0,M2.0] (if ∃X∈Xs. Qf X = SKIP then SKIP else DIV)