Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_law_decompo(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | June 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | April 2006 (modified) | | March 2007 (modified) | | August 2007 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_F_law_decompo imports CSP_F_domain CSP_T_law_decompo begin (*------------------------------------------------* | | | laws for monotonicity and congruence | | | *------------------------------------------------*) (********************************************************* Act_prefix mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspF_Act_prefix_mono: "[| a = b ; P <=F[M1,M2] Q |] ==> a -> P <=F[M1,M2] b -> Q" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Act_prefix_mono) apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_failures) apply (fast) done lemma cspF_Act_prefix_cong: "[| a = b ; P =F[M1,M2] Q |] ==> a -> P =F[M1,M2] b -> Q" apply (simp add: cspF_eq_ref_iff) apply (simp add: cspF_Act_prefix_mono) done (********************************************************* Ext_pre_choice mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspF_Ext_pre_choice_mono: "[| X = Y ; !! a. a:Y ==> Pf a <=F[M1,M2] Qf a |] ==> ? :X -> Pf <=F[M1,M2] ? :Y -> Qf" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Ext_pre_choice_mono) apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_failures) apply (fast) done lemma cspF_Ext_pre_choice_cong: "[| X = Y ; !! a. a:Y ==> Pf a =F[M1,M2] Qf a |] ==> ? :X -> Pf =F[M1,M2] ? :Y -> Qf" by (simp add: cspF_eq_ref_iff cspF_Ext_pre_choice_mono) (********************************************************* Ext choice mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspF_Ext_choice_mono: "[| P1 <=F[M1,M2] Q1 ; P2 <=F[M1,M2] Q2 |] ==> P1 [+] P2 <=F[M1,M2] Q1 [+] Q2" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Ext_choice_mono) apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_failures) apply (elim conjE disjE) apply (force)+ done lemma cspF_Ext_choice_cong: "[| P1 =F[M1,M2] Q1 ; P2 =F[M1,M2] Q2 |] ==> P1 [+] P2 =F[M1,M2] Q1 [+] Q2" by (simp add: cspF_eq_ref_iff cspF_Ext_choice_mono) (********************************************************* Int choice mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspF_Int_choice_mono: "[| P1 <=F[M1,M2] Q1 ; P2 <=F[M1,M2] Q2 |] ==> P1 |~| P2 <=F[M1,M2] Q1 |~| Q2" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Int_choice_mono) apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_failures) apply (fast) done lemma cspF_Int_choice_cong: "[| P1 =F[M1,M2] Q1 ; P2 =F[M1,M2] Q2 |] ==> P1 |~| P2 =F[M1,M2] Q1 |~| Q2" by (simp add: cspF_eq_ref_iff cspF_Int_choice_mono) (********************************************************* replicated internal choice *********************************************************) (*------------------* | csp law | *------------------*) (* mono *) lemma cspF_Rep_int_choice_mono_sum: "[| C1 = C2 ; !! c. c: sumset C1 ==> Pf c <=F[M1,M2] Qf c |] ==> !! :C1 .. Pf <=F[M1,M2] !! :C2 .. Qf" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Rep_int_choice_mono_sum) apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_failures) apply (fast) done lemma cspF_Rep_int_choice_mono_nat: "[| N1 = N2 ; !! n. n:N2 ==> Pf n <=F[M1,M2] Qf n |] ==> !nat :N1 .. Pf <=F[M1,M2] !nat :N2 .. Qf" apply (simp add: Rep_int_choice_ss_def) by (rule cspF_Rep_int_choice_mono_sum, auto) lemma cspF_Rep_int_choice_mono_set: "[| Xs1 = Xs2 ; !! X. X:Xs2 ==> Pf X <=F[M1,M2] Qf X |] ==> !set :Xs1 .. Pf <=F[M1,M2] !set :Xs2 .. Qf" apply (simp add: Rep_int_choice_ss_def) by (rule cspF_Rep_int_choice_mono_sum, auto) lemma cspF_Rep_int_choice_mono_com: "[| X1 = X2 ; !! x. x:X2 ==> Pf x <=F[M1,M2] Qf x |] ==> ! :X1 .. Pf <=F[M1,M2] ! :X2 .. Qf" apply (simp add: Rep_int_choice_com_def) by (rule cspF_Rep_int_choice_mono_set, auto) lemma cspF_Rep_int_choice_mono_f: "[| inj f ; X1 = X2 ; !! x. x:X2 ==> Pf x <=F[M1,M2] Qf x |] ==> !<f> :X1 .. Pf <=F[M1,M2] !<f> :X2 .. Qf" apply (simp add: Rep_int_choice_f_def) by (rule cspF_Rep_int_choice_mono_com, auto) lemmas cspF_Rep_int_choice_mono = cspF_Rep_int_choice_mono_sum cspF_Rep_int_choice_mono_nat cspF_Rep_int_choice_mono_set cspF_Rep_int_choice_mono_com cspF_Rep_int_choice_mono_f (* cong *) lemma cspF_Rep_int_choice_cong_sum: "[| C1 = C2 ; !! c. c: sumset C1 ==> Pf c =F[M1,M2] Qf c |] ==> !! :C1 .. Pf =F[M1,M2] !! :C2 .. Qf" by (simp add: cspF_eq_ref_iff cspF_Rep_int_choice_mono) lemma cspF_Rep_int_choice_cong_nat: "[| N1 = N2 ; !! n. n:N2 ==> Pf n =F[M1,M2] Qf n |] ==> !nat :N1 .. Pf =F[M1,M2] !nat :N2 .. Qf" by (simp add: cspF_eq_ref_iff cspF_Rep_int_choice_mono) lemma cspF_Rep_int_choice_cong_set: "[| Xs1 = Xs2 ; !! X. X:Xs2 ==> Pf X =F[M1,M2] Qf X |] ==> !set :Xs1 .. Pf =F[M1,M2] !set :Xs2 .. Qf" by (simp add: cspF_eq_ref_iff cspF_Rep_int_choice_mono) lemma cspF_Rep_int_choice_cong_com: "[| X1 = X2 ; !! x. x:X2 ==> Pf x =F[M1,M2] Qf x |] ==> ! :X1 .. Pf =F[M1,M2] ! :X2 .. Qf" by (simp add: cspF_eq_ref_iff cspF_Rep_int_choice_mono) lemma cspF_Rep_int_choice_cong_f: "[| inj f ; X1 = X2 ; !! x. x:X2 ==> Pf x =F[M1,M2] Qf x |] ==> !<f> :X1 .. Pf =F[M1,M2] !<f> :X2 .. Qf" by (simp add: cspF_eq_ref_iff cspF_Rep_int_choice_mono) lemmas cspF_Rep_int_choice_cong = cspF_Rep_int_choice_cong_sum cspF_Rep_int_choice_cong_nat cspF_Rep_int_choice_cong_set cspF_Rep_int_choice_cong_com cspF_Rep_int_choice_cong_f (********************************************************* IF mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspF_IF_mono: "[| b1 = b2 ; P1 <=F[M1,M2] Q1 ; P2 <=F[M1,M2] Q2 |] ==> IF b1 THEN P1 ELSE P2 <=F[M1,M2] IF b2 THEN Q1 ELSE Q2" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_IF_mono) apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_failures) done lemma cspF_IF_cong: "[| b1 = b2 ; P1 =F[M1,M2] Q1 ; P2 =F[M1,M2] Q2 |] ==> IF b1 THEN P1 ELSE P2 =F[M1,M2] IF b2 THEN Q1 ELSE Q2" by (simp add: cspF_eq_ref_iff cspF_IF_mono) (********************************************************* Parallel mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspF_Parallel_mono: "[| X = Y ; P1 <=F[M1,M2] Q1 ; P2 <=F[M1,M2] Q2 |] ==> P1 |[X]| P2 <=F[M1,M2] Q1 |[Y]| Q2" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Parallel_mono) apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_failures) apply (fast) done lemma cspF_Parallel_cong: "[| X = Y ; P1 =F[M1,M2] Q1 ; P2 =F[M1,M2] Q2 |] ==> P1 |[X]| P2 =F[M1,M2] Q1 |[Y]| Q2" by (simp add: cspF_eq_ref_iff cspF_Parallel_mono) (********************************************************* Hiding mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspF_Hiding_mono: "[| X = Y ; P <=F[M1,M2] Q |] ==> P -- X <=F[M1,M2] Q -- Y" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Hiding_mono) apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_failures) apply (fast) done lemma cspF_Hiding_cong: "[| X = Y ; P =F[M1,M2] Q |] ==> P -- X =F[M1,M2] Q -- Y" by (simp add: cspF_eq_ref_iff cspF_Hiding_mono) (********************************************************* Renaming mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspF_Renaming_mono: "[| r1 = r2 ; P <=F[M1,M2] Q |] ==> P [[r1]] <=F[M1,M2] Q [[r2]]" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Renaming_mono) apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_failures) apply (fast) done lemma cspF_Renaming_cong: "[| r1 = r2 ; P =F[M1,M2] Q |] ==> P [[r1]] =F[M1,M2] Q [[r2]]" by (simp add: cspF_eq_ref_iff cspF_Renaming_mono) (********************************************************* Sequential composition mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspF_Seq_compo_mono: "[| P1 <=F[M1,M2] Q1 ; P2 <=F[M1,M2] Q2 |] ==> P1 ;; P2 <=F[M1,M2] Q1 ;; Q2" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Seq_compo_mono) apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_failures) apply (fast) done lemma cspF_Seq_compo_cong: "[| P1 =F[M1,M2] Q1 ; P2 =F[M1,M2] Q2 |] ==> P1 ;; P2 =F[M1,M2] Q1 ;; Q2" by (simp add: cspF_eq_ref_iff cspF_Seq_compo_mono) (********************************************************* Depth_rest mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspF_Depth_rest_mono: "[| n1 = n2 ; P <=F[M1,M2] Q |] ==> P |. n1 <=F[M1,M2] Q |. n2" apply (simp add: cspF_cspT_semantics) apply (simp add: cspT_Depth_rest_mono) apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_failures) done lemma cspF_Depth_rest_cong: "[| n1 = n2 ; P =F[M1,M2] Q |] ==> P |. n1 =F[M1,M2] Q |. n2" by (simp add: cspF_eq_ref_iff cspF_Depth_rest_mono) (********************************************************* Timeout mono *********************************************************) (*------------------* | csp law | *------------------*) lemma cspF_Timeout_mono: "[| P1 <=F[M1,M2] Q1 ; P2 <=F[M1,M2] Q2 |] ==> P1 [> P2 <=F[M1,M2] Q1 [> Q2" apply (rule cspF_Ext_choice_mono) apply (rule cspF_Int_choice_mono) by (simp_all) lemma cspF_Timeout_cong: "[| P1 =F[M1,M2] Q1 ; P2 =F[M1,M2] Q2 |] ==> P1 [> P2 =F[M1,M2] Q1 [> Q2" by (simp add: cspF_eq_ref_iff cspF_Timeout_mono) (*------------------------------------------------------* | alias | *------------------------------------------------------*) lemmas cspF_free_mono = cspF_Ext_choice_mono cspF_Int_choice_mono cspF_Parallel_mono cspF_Hiding_mono cspF_Renaming_mono cspF_Seq_compo_mono cspF_Depth_rest_mono lemmas cspF_mono = cspF_free_mono cspF_Act_prefix_mono cspF_Ext_pre_choice_mono cspF_Rep_int_choice_mono cspF_IF_mono lemmas cspF_free_cong = cspF_Ext_choice_cong cspF_Int_choice_cong cspF_Parallel_cong cspF_Hiding_cong cspF_Renaming_cong cspF_Seq_compo_cong cspF_Depth_rest_cong lemmas cspF_cong = cspF_free_cong cspF_Act_prefix_cong cspF_Ext_pre_choice_cong cspF_Rep_int_choice_cong cspF_IF_cong lemmas cspF_free_decompo = cspF_free_mono cspF_free_cong lemmas cspF_decompo = cspF_mono cspF_cong lemmas cspF_rm_head_mono = cspF_Act_prefix_mono cspF_Ext_pre_choice_mono lemmas cspF_rm_head_cong = cspF_Act_prefix_cong cspF_Ext_pre_choice_cong lemmas cspF_rm_head = cspF_rm_head_mono cspF_rm_head_cong (*-------------------------------------------------------* | decomposition with ALL and EX | *-------------------------------------------------------*) (*** Rep_int_choice ***) lemma cspF_Rep_int_choice_sum_decompo_ALL_EX_ref: "ALL c2: sumset C2. EX c1: sumset C1. (Pf c1) <=F[M1,M2] (Qf c2) ==> !! :C1 .. Pf <=F[M1,M2] !! :C2 .. Qf" apply (simp add: cspF_cspT_semantics) apply (rule conjI) apply (rule cspT_Rep_int_choice_decompo_ALL_EX) apply (force) apply (rule, simp add: in_failures) apply (erule bexE) apply (drule_tac x="c" in bspec, simp) apply (erule bexE) apply (rule_tac x="c1" in bexI) apply (force) apply (simp) done lemma cspF_Rep_int_choice_nat_decompo_ALL_EX_ref: "ALL n2:N2. EX n1:N1. (Pf n1) <=F[M1,M2] (Qf n2) ==> !nat :N1 .. Pf <=F[M1,M2] !nat :N2 .. Qf" apply (simp add: Rep_int_choice_ss_def) apply (rule cspF_Rep_int_choice_sum_decompo_ALL_EX_ref) apply (auto) apply (drule_tac x="a" in bspec, simp) apply (auto) done lemma cspF_Rep_int_choice_set_decompo_ALL_EX_ref: "ALL X2:Xs2. EX X1:Xs1. (Pf X1) <=F[M1,M2] (Qf X2) ==> !set :Xs1 .. Pf <=F[M1,M2] !set :Xs2 .. Qf" apply (simp add: Rep_int_choice_ss_def) apply (rule cspF_Rep_int_choice_sum_decompo_ALL_EX_ref) apply (auto) apply (drule_tac x="a" in bspec, simp) apply (auto) done lemmas cspF_Rep_int_choice_decompo_ALL_EX_ref = cspF_Rep_int_choice_sum_decompo_ALL_EX_ref cspF_Rep_int_choice_nat_decompo_ALL_EX_ref cspF_Rep_int_choice_set_decompo_ALL_EX_ref lemma cspF_Rep_int_choice_sum_decompo_ALL_EX_eq: "[| ALL c1: sumset C1. EX c2: sumset C2. (Pf c1) =F[M1,M2] (Qf c2) ; ALL c2: sumset C2. EX c1: sumset C1. (Pf c1) =F[M1,M2] (Qf c2) |] ==> !! :C1 .. Pf =F[M1,M2] !! :C2 .. Qf" apply (simp add: cspF_eq_ref_iff) apply (rule conjI) apply (rule cspF_Rep_int_choice_decompo_ALL_EX_ref) apply (force) apply (rule cspF_Rep_int_choice_decompo_ALL_EX_ref) apply (force) done lemma cspF_Rep_int_choice_nat_decompo_ALL_EX_eq: "[| ALL n1:N1. EX n2:N2. (Pf n1) =F[M1,M2] (Qf n2) ; ALL n2:N2. EX n1:N1. (Pf n1) =F[M1,M2] (Qf n2) |] ==> !nat :N1 .. Pf =F[M1,M2] !nat :N2 .. Qf" apply (simp add: cspF_eq_ref_iff) apply (rule conjI) apply (rule cspF_Rep_int_choice_decompo_ALL_EX_ref) apply (force) apply (rule cspF_Rep_int_choice_decompo_ALL_EX_ref) apply (force) done lemma cspF_Rep_int_choice_set_decompo_ALL_EX_eq: "[| ALL X1:Xs1. EX X2:Xs2. (Pf X1) =F[M1,M2] (Qf X2) ; ALL X2:Xs2. EX X1:Xs1. (Pf X1) =F[M1,M2] (Qf X2) |] ==> !set :Xs1 .. Pf =F[M1,M2] !set :Xs2 .. Qf" apply (simp add: cspF_eq_ref_iff) apply (rule conjI) apply (rule cspF_Rep_int_choice_decompo_ALL_EX_ref) apply (force) apply (rule cspF_Rep_int_choice_decompo_ALL_EX_ref) apply (force) done lemmas cspF_Rep_int_choice_decompo_ALL_EX_eq = cspF_Rep_int_choice_sum_decompo_ALL_EX_eq cspF_Rep_int_choice_nat_decompo_ALL_EX_eq cspF_Rep_int_choice_set_decompo_ALL_EX_eq lemmas cspF_Rep_int_choice_decompo_ALL_EX = cspF_Rep_int_choice_decompo_ALL_EX_ref cspF_Rep_int_choice_decompo_ALL_EX_eq end
lemma cspF_Act_prefix_mono:
[| a = b; P <=F[M1.0,M2.0] Q |] ==> a -> P <=F[M1.0,M2.0] b -> Q
lemma cspF_Act_prefix_cong:
[| a = b; P =F[M1.0,M2.0] Q |] ==> a -> P =F[M1.0,M2.0] b -> Q
lemma cspF_Ext_pre_choice_mono:
[| X = Y; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |]
==> ? :X -> Pf <=F[M1.0,M2.0] ? :Y -> Qf
lemma cspF_Ext_pre_choice_cong:
[| X = Y; !!a. a ∈ Y ==> Pf a =F[M1.0,M2.0] Qf a |]
==> ? :X -> Pf =F[M1.0,M2.0] ? :Y -> Qf
lemma cspF_Ext_choice_mono:
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 [+] P2.0 <=F[M1.0,M2.0] Q1.0 [+] Q2.0
lemma cspF_Ext_choice_cong:
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 [+] P2.0 =F[M1.0,M2.0] Q1.0 [+] Q2.0
lemma cspF_Int_choice_mono:
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 |~| P2.0 <=F[M1.0,M2.0] Q1.0 |~| Q2.0
lemma cspF_Int_choice_cong:
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 |~| P2.0 =F[M1.0,M2.0] Q1.0 |~| Q2.0
lemma cspF_Rep_int_choice_mono_sum:
[| C1.0 = C2.0; !!c. c ∈ sumset C1.0 ==> Pf c <=F[M1.0,M2.0] Qf c |]
==> !! :C1.0 .. Pf <=F[M1.0,M2.0] !! :C2.0 .. Qf
lemma cspF_Rep_int_choice_mono_nat:
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n <=F[M1.0,M2.0] Qf n |]
==> !nat :N1.0 .. Pf <=F[M1.0,M2.0] !nat :N2.0 .. Qf
lemma cspF_Rep_int_choice_mono_set:
[| Xs1.0 = Xs2.0; !!X. X ∈ Xs2.0 ==> Pf X <=F[M1.0,M2.0] Qf X |]
==> !set :Xs1.0 .. Pf <=F[M1.0,M2.0] !set :Xs2.0 .. Qf
lemma cspF_Rep_int_choice_mono_com:
[| X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x <=F[M1.0,M2.0] Qf x |]
==> ! :X1.0 .. Pf <=F[M1.0,M2.0] ! :X2.0 .. Qf
lemma cspF_Rep_int_choice_mono_f:
[| inj f; X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x <=F[M1.0,M2.0] Qf x |]
==> !<f> :X1.0 .. Pf <=F[M1.0,M2.0] !<f> :X2.0 .. Qf
lemma cspF_Rep_int_choice_mono:
[| C1.0 = C2.0; !!c. c ∈ sumset C1.0 ==> Pf c <=F[M1.0,M2.0] Qf c |]
==> !! :C1.0 .. Pf <=F[M1.0,M2.0] !! :C2.0 .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n <=F[M1.0,M2.0] Qf n |]
==> !nat :N1.0 .. Pf <=F[M1.0,M2.0] !nat :N2.0 .. Qf
[| Xs1.0 = Xs2.0; !!X. X ∈ Xs2.0 ==> Pf X <=F[M1.0,M2.0] Qf X |]
==> !set :Xs1.0 .. Pf <=F[M1.0,M2.0] !set :Xs2.0 .. Qf
[| X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x <=F[M1.0,M2.0] Qf x |]
==> ! :X1.0 .. Pf <=F[M1.0,M2.0] ! :X2.0 .. Qf
[| inj f; X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x <=F[M1.0,M2.0] Qf x |]
==> !<f> :X1.0 .. Pf <=F[M1.0,M2.0] !<f> :X2.0 .. Qf
lemma cspF_Rep_int_choice_cong_sum:
[| C1.0 = C2.0; !!c. c ∈ sumset C1.0 ==> Pf c =F[M1.0,M2.0] Qf c |]
==> !! :C1.0 .. Pf =F[M1.0,M2.0] !! :C2.0 .. Qf
lemma cspF_Rep_int_choice_cong_nat:
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n =F[M1.0,M2.0] Qf n |]
==> !nat :N1.0 .. Pf =F[M1.0,M2.0] !nat :N2.0 .. Qf
lemma cspF_Rep_int_choice_cong_set:
[| Xs1.0 = Xs2.0; !!X. X ∈ Xs2.0 ==> Pf X =F[M1.0,M2.0] Qf X |]
==> !set :Xs1.0 .. Pf =F[M1.0,M2.0] !set :Xs2.0 .. Qf
lemma cspF_Rep_int_choice_cong_com:
[| X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x =F[M1.0,M2.0] Qf x |]
==> ! :X1.0 .. Pf =F[M1.0,M2.0] ! :X2.0 .. Qf
lemma cspF_Rep_int_choice_cong_f:
[| inj f; X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x =F[M1.0,M2.0] Qf x |]
==> !<f> :X1.0 .. Pf =F[M1.0,M2.0] !<f> :X2.0 .. Qf
lemma cspF_Rep_int_choice_cong:
[| C1.0 = C2.0; !!c. c ∈ sumset C1.0 ==> Pf c =F[M1.0,M2.0] Qf c |]
==> !! :C1.0 .. Pf =F[M1.0,M2.0] !! :C2.0 .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n =F[M1.0,M2.0] Qf n |]
==> !nat :N1.0 .. Pf =F[M1.0,M2.0] !nat :N2.0 .. Qf
[| Xs1.0 = Xs2.0; !!X. X ∈ Xs2.0 ==> Pf X =F[M1.0,M2.0] Qf X |]
==> !set :Xs1.0 .. Pf =F[M1.0,M2.0] !set :Xs2.0 .. Qf
[| X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x =F[M1.0,M2.0] Qf x |]
==> ! :X1.0 .. Pf =F[M1.0,M2.0] ! :X2.0 .. Qf
[| inj f; X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x =F[M1.0,M2.0] Qf x |]
==> !<f> :X1.0 .. Pf =F[M1.0,M2.0] !<f> :X2.0 .. Qf
lemma cspF_IF_mono:
[| b1.0 = b2.0; P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> IF b1.0 THEN P1.0 ELSE P2.0 <=F[M1.0,M2.0] IF b2.0 THEN Q1.0 ELSE Q2.0
lemma cspF_IF_cong:
[| b1.0 = b2.0; P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> IF b1.0 THEN P1.0 ELSE P2.0 =F[M1.0,M2.0] IF b2.0 THEN Q1.0 ELSE Q2.0
lemma cspF_Parallel_mono:
[| X = Y; P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 |[X]| P2.0 <=F[M1.0,M2.0] Q1.0 |[Y]| Q2.0
lemma cspF_Parallel_cong:
[| X = Y; P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 |[X]| P2.0 =F[M1.0,M2.0] Q1.0 |[Y]| Q2.0
lemma cspF_Hiding_mono:
[| X = Y; P <=F[M1.0,M2.0] Q |] ==> P -- X <=F[M1.0,M2.0] Q -- Y
lemma cspF_Hiding_cong:
[| X = Y; P =F[M1.0,M2.0] Q |] ==> P -- X =F[M1.0,M2.0] Q -- Y
lemma cspF_Renaming_mono:
[| r1.0 = r2.0; P <=F[M1.0,M2.0] Q |] ==> P [[r1.0]] <=F[M1.0,M2.0] Q [[r2.0]]
lemma cspF_Renaming_cong:
[| r1.0 = r2.0; P =F[M1.0,M2.0] Q |] ==> P [[r1.0]] =F[M1.0,M2.0] Q [[r2.0]]
lemma cspF_Seq_compo_mono:
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 <=F[M1.0,M2.0] Q1.0 ;; Q2.0
lemma cspF_Seq_compo_cong:
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 =F[M1.0,M2.0] Q1.0 ;; Q2.0
lemma cspF_Depth_rest_mono:
[| n1.0 = n2.0; P <=F[M1.0,M2.0] Q |] ==> P |. n1.0 <=F[M1.0,M2.0] Q |. n2.0
lemma cspF_Depth_rest_cong:
[| n1.0 = n2.0; P =F[M1.0,M2.0] Q |] ==> P |. n1.0 =F[M1.0,M2.0] Q |. n2.0
lemma cspF_Timeout_mono:
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 [> P2.0 <=F[M1.0,M2.0] Q1.0 [> Q2.0
lemma cspF_Timeout_cong:
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 [> P2.0 =F[M1.0,M2.0] Q1.0 [> Q2.0
lemma cspF_free_mono:
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 [+] P2.0 <=F[M1.0,M2.0] Q1.0 [+] Q2.0
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 |~| P2.0 <=F[M1.0,M2.0] Q1.0 |~| Q2.0
[| X = Y; P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 |[X]| P2.0 <=F[M1.0,M2.0] Q1.0 |[Y]| Q2.0
[| X = Y; P <=F[M1.0,M2.0] Q |] ==> P -- X <=F[M1.0,M2.0] Q -- Y
[| r1.0 = r2.0; P <=F[M1.0,M2.0] Q |] ==> P [[r1.0]] <=F[M1.0,M2.0] Q [[r2.0]]
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 <=F[M1.0,M2.0] Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=F[M1.0,M2.0] Q |] ==> P |. n1.0 <=F[M1.0,M2.0] Q |. n2.0
lemma cspF_mono:
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 [+] P2.0 <=F[M1.0,M2.0] Q1.0 [+] Q2.0
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 |~| P2.0 <=F[M1.0,M2.0] Q1.0 |~| Q2.0
[| X = Y; P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 |[X]| P2.0 <=F[M1.0,M2.0] Q1.0 |[Y]| Q2.0
[| X = Y; P <=F[M1.0,M2.0] Q |] ==> P -- X <=F[M1.0,M2.0] Q -- Y
[| r1.0 = r2.0; P <=F[M1.0,M2.0] Q |] ==> P [[r1.0]] <=F[M1.0,M2.0] Q [[r2.0]]
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 <=F[M1.0,M2.0] Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=F[M1.0,M2.0] Q |] ==> P |. n1.0 <=F[M1.0,M2.0] Q |. n2.0
[| a = b; P <=F[M1.0,M2.0] Q |] ==> a -> P <=F[M1.0,M2.0] b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |]
==> ? :X -> Pf <=F[M1.0,M2.0] ? :Y -> Qf
[| C1.0 = C2.0; !!c. c ∈ sumset C1.0 ==> Pf c <=F[M1.0,M2.0] Qf c |]
==> !! :C1.0 .. Pf <=F[M1.0,M2.0] !! :C2.0 .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n <=F[M1.0,M2.0] Qf n |]
==> !nat :N1.0 .. Pf <=F[M1.0,M2.0] !nat :N2.0 .. Qf
[| Xs1.0 = Xs2.0; !!X. X ∈ Xs2.0 ==> Pf X <=F[M1.0,M2.0] Qf X |]
==> !set :Xs1.0 .. Pf <=F[M1.0,M2.0] !set :Xs2.0 .. Qf
[| X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x <=F[M1.0,M2.0] Qf x |]
==> ! :X1.0 .. Pf <=F[M1.0,M2.0] ! :X2.0 .. Qf
[| inj f; X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x <=F[M1.0,M2.0] Qf x |]
==> !<f> :X1.0 .. Pf <=F[M1.0,M2.0] !<f> :X2.0 .. Qf
[| b1.0 = b2.0; P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> IF b1.0 THEN P1.0 ELSE P2.0 <=F[M1.0,M2.0] IF b2.0 THEN Q1.0 ELSE Q2.0
lemma cspF_free_cong:
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 [+] P2.0 =F[M1.0,M2.0] Q1.0 [+] Q2.0
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 |~| P2.0 =F[M1.0,M2.0] Q1.0 |~| Q2.0
[| X = Y; P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 |[X]| P2.0 =F[M1.0,M2.0] Q1.0 |[Y]| Q2.0
[| X = Y; P =F[M1.0,M2.0] Q |] ==> P -- X =F[M1.0,M2.0] Q -- Y
[| r1.0 = r2.0; P =F[M1.0,M2.0] Q |] ==> P [[r1.0]] =F[M1.0,M2.0] Q [[r2.0]]
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 =F[M1.0,M2.0] Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =F[M1.0,M2.0] Q |] ==> P |. n1.0 =F[M1.0,M2.0] Q |. n2.0
lemma cspF_cong:
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 [+] P2.0 =F[M1.0,M2.0] Q1.0 [+] Q2.0
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 |~| P2.0 =F[M1.0,M2.0] Q1.0 |~| Q2.0
[| X = Y; P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 |[X]| P2.0 =F[M1.0,M2.0] Q1.0 |[Y]| Q2.0
[| X = Y; P =F[M1.0,M2.0] Q |] ==> P -- X =F[M1.0,M2.0] Q -- Y
[| r1.0 = r2.0; P =F[M1.0,M2.0] Q |] ==> P [[r1.0]] =F[M1.0,M2.0] Q [[r2.0]]
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 =F[M1.0,M2.0] Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =F[M1.0,M2.0] Q |] ==> P |. n1.0 =F[M1.0,M2.0] Q |. n2.0
[| a = b; P =F[M1.0,M2.0] Q |] ==> a -> P =F[M1.0,M2.0] b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a =F[M1.0,M2.0] Qf a |]
==> ? :X -> Pf =F[M1.0,M2.0] ? :Y -> Qf
[| C1.0 = C2.0; !!c. c ∈ sumset C1.0 ==> Pf c =F[M1.0,M2.0] Qf c |]
==> !! :C1.0 .. Pf =F[M1.0,M2.0] !! :C2.0 .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n =F[M1.0,M2.0] Qf n |]
==> !nat :N1.0 .. Pf =F[M1.0,M2.0] !nat :N2.0 .. Qf
[| Xs1.0 = Xs2.0; !!X. X ∈ Xs2.0 ==> Pf X =F[M1.0,M2.0] Qf X |]
==> !set :Xs1.0 .. Pf =F[M1.0,M2.0] !set :Xs2.0 .. Qf
[| X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x =F[M1.0,M2.0] Qf x |]
==> ! :X1.0 .. Pf =F[M1.0,M2.0] ! :X2.0 .. Qf
[| inj f; X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x =F[M1.0,M2.0] Qf x |]
==> !<f> :X1.0 .. Pf =F[M1.0,M2.0] !<f> :X2.0 .. Qf
[| b1.0 = b2.0; P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> IF b1.0 THEN P1.0 ELSE P2.0 =F[M1.0,M2.0] IF b2.0 THEN Q1.0 ELSE Q2.0
lemma cspF_free_decompo:
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 [+] P2.0 <=F[M1.0,M2.0] Q1.0 [+] Q2.0
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 |~| P2.0 <=F[M1.0,M2.0] Q1.0 |~| Q2.0
[| X = Y; P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 |[X]| P2.0 <=F[M1.0,M2.0] Q1.0 |[Y]| Q2.0
[| X = Y; P <=F[M1.0,M2.0] Q |] ==> P -- X <=F[M1.0,M2.0] Q -- Y
[| r1.0 = r2.0; P <=F[M1.0,M2.0] Q |] ==> P [[r1.0]] <=F[M1.0,M2.0] Q [[r2.0]]
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 <=F[M1.0,M2.0] Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=F[M1.0,M2.0] Q |] ==> P |. n1.0 <=F[M1.0,M2.0] Q |. n2.0
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 [+] P2.0 =F[M1.0,M2.0] Q1.0 [+] Q2.0
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 |~| P2.0 =F[M1.0,M2.0] Q1.0 |~| Q2.0
[| X = Y; P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 |[X]| P2.0 =F[M1.0,M2.0] Q1.0 |[Y]| Q2.0
[| X = Y; P =F[M1.0,M2.0] Q |] ==> P -- X =F[M1.0,M2.0] Q -- Y
[| r1.0 = r2.0; P =F[M1.0,M2.0] Q |] ==> P [[r1.0]] =F[M1.0,M2.0] Q [[r2.0]]
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 =F[M1.0,M2.0] Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =F[M1.0,M2.0] Q |] ==> P |. n1.0 =F[M1.0,M2.0] Q |. n2.0
lemma cspF_decompo:
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 [+] P2.0 <=F[M1.0,M2.0] Q1.0 [+] Q2.0
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 |~| P2.0 <=F[M1.0,M2.0] Q1.0 |~| Q2.0
[| X = Y; P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 |[X]| P2.0 <=F[M1.0,M2.0] Q1.0 |[Y]| Q2.0
[| X = Y; P <=F[M1.0,M2.0] Q |] ==> P -- X <=F[M1.0,M2.0] Q -- Y
[| r1.0 = r2.0; P <=F[M1.0,M2.0] Q |] ==> P [[r1.0]] <=F[M1.0,M2.0] Q [[r2.0]]
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 <=F[M1.0,M2.0] Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=F[M1.0,M2.0] Q |] ==> P |. n1.0 <=F[M1.0,M2.0] Q |. n2.0
[| a = b; P <=F[M1.0,M2.0] Q |] ==> a -> P <=F[M1.0,M2.0] b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |]
==> ? :X -> Pf <=F[M1.0,M2.0] ? :Y -> Qf
[| C1.0 = C2.0; !!c. c ∈ sumset C1.0 ==> Pf c <=F[M1.0,M2.0] Qf c |]
==> !! :C1.0 .. Pf <=F[M1.0,M2.0] !! :C2.0 .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n <=F[M1.0,M2.0] Qf n |]
==> !nat :N1.0 .. Pf <=F[M1.0,M2.0] !nat :N2.0 .. Qf
[| Xs1.0 = Xs2.0; !!X. X ∈ Xs2.0 ==> Pf X <=F[M1.0,M2.0] Qf X |]
==> !set :Xs1.0 .. Pf <=F[M1.0,M2.0] !set :Xs2.0 .. Qf
[| X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x <=F[M1.0,M2.0] Qf x |]
==> ! :X1.0 .. Pf <=F[M1.0,M2.0] ! :X2.0 .. Qf
[| inj f; X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x <=F[M1.0,M2.0] Qf x |]
==> !<f> :X1.0 .. Pf <=F[M1.0,M2.0] !<f> :X2.0 .. Qf
[| b1.0 = b2.0; P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> IF b1.0 THEN P1.0 ELSE P2.0 <=F[M1.0,M2.0] IF b2.0 THEN Q1.0 ELSE Q2.0
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 [+] P2.0 =F[M1.0,M2.0] Q1.0 [+] Q2.0
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 |~| P2.0 =F[M1.0,M2.0] Q1.0 |~| Q2.0
[| X = Y; P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 |[X]| P2.0 =F[M1.0,M2.0] Q1.0 |[Y]| Q2.0
[| X = Y; P =F[M1.0,M2.0] Q |] ==> P -- X =F[M1.0,M2.0] Q -- Y
[| r1.0 = r2.0; P =F[M1.0,M2.0] Q |] ==> P [[r1.0]] =F[M1.0,M2.0] Q [[r2.0]]
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 =F[M1.0,M2.0] Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =F[M1.0,M2.0] Q |] ==> P |. n1.0 =F[M1.0,M2.0] Q |. n2.0
[| a = b; P =F[M1.0,M2.0] Q |] ==> a -> P =F[M1.0,M2.0] b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a =F[M1.0,M2.0] Qf a |]
==> ? :X -> Pf =F[M1.0,M2.0] ? :Y -> Qf
[| C1.0 = C2.0; !!c. c ∈ sumset C1.0 ==> Pf c =F[M1.0,M2.0] Qf c |]
==> !! :C1.0 .. Pf =F[M1.0,M2.0] !! :C2.0 .. Qf
[| N1.0 = N2.0; !!n. n ∈ N2.0 ==> Pf n =F[M1.0,M2.0] Qf n |]
==> !nat :N1.0 .. Pf =F[M1.0,M2.0] !nat :N2.0 .. Qf
[| Xs1.0 = Xs2.0; !!X. X ∈ Xs2.0 ==> Pf X =F[M1.0,M2.0] Qf X |]
==> !set :Xs1.0 .. Pf =F[M1.0,M2.0] !set :Xs2.0 .. Qf
[| X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x =F[M1.0,M2.0] Qf x |]
==> ! :X1.0 .. Pf =F[M1.0,M2.0] ! :X2.0 .. Qf
[| inj f; X1.0 = X2.0; !!x. x ∈ X2.0 ==> Pf x =F[M1.0,M2.0] Qf x |]
==> !<f> :X1.0 .. Pf =F[M1.0,M2.0] !<f> :X2.0 .. Qf
[| b1.0 = b2.0; P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> IF b1.0 THEN P1.0 ELSE P2.0 =F[M1.0,M2.0] IF b2.0 THEN Q1.0 ELSE Q2.0
lemma cspF_rm_head_mono:
[| a = b; P <=F[M1.0,M2.0] Q |] ==> a -> P <=F[M1.0,M2.0] b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |]
==> ? :X -> Pf <=F[M1.0,M2.0] ? :Y -> Qf
lemma cspF_rm_head_cong:
[| a = b; P =F[M1.0,M2.0] Q |] ==> a -> P =F[M1.0,M2.0] b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a =F[M1.0,M2.0] Qf a |]
==> ? :X -> Pf =F[M1.0,M2.0] ? :Y -> Qf
lemma cspF_rm_head:
[| a = b; P <=F[M1.0,M2.0] Q |] ==> a -> P <=F[M1.0,M2.0] b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a <=F[M1.0,M2.0] Qf a |]
==> ? :X -> Pf <=F[M1.0,M2.0] ? :Y -> Qf
[| a = b; P =F[M1.0,M2.0] Q |] ==> a -> P =F[M1.0,M2.0] b -> Q
[| X = Y; !!a. a ∈ Y ==> Pf a =F[M1.0,M2.0] Qf a |]
==> ? :X -> Pf =F[M1.0,M2.0] ? :Y -> Qf
lemma cspF_Rep_int_choice_sum_decompo_ALL_EX_ref:
∀c2∈sumset C2.0. ∃c1∈sumset C1.0. Pf c1 <=F[M1.0,M2.0] Qf c2
==> !! :C1.0 .. Pf <=F[M1.0,M2.0] !! :C2.0 .. Qf
lemma cspF_Rep_int_choice_nat_decompo_ALL_EX_ref:
∀n2∈N2.0. ∃n1∈N1.0. Pf n1 <=F[M1.0,M2.0] Qf n2
==> !nat :N1.0 .. Pf <=F[M1.0,M2.0] !nat :N2.0 .. Qf
lemma cspF_Rep_int_choice_set_decompo_ALL_EX_ref:
∀X2∈Xs2.0. ∃X1∈Xs1.0. Pf X1 <=F[M1.0,M2.0] Qf X2
==> !set :Xs1.0 .. Pf <=F[M1.0,M2.0] !set :Xs2.0 .. Qf
lemma cspF_Rep_int_choice_decompo_ALL_EX_ref:
∀c2∈sumset C2.0. ∃c1∈sumset C1.0. Pf c1 <=F[M1.0,M2.0] Qf c2
==> !! :C1.0 .. Pf <=F[M1.0,M2.0] !! :C2.0 .. Qf
∀n2∈N2.0. ∃n1∈N1.0. Pf n1 <=F[M1.0,M2.0] Qf n2
==> !nat :N1.0 .. Pf <=F[M1.0,M2.0] !nat :N2.0 .. Qf
∀X2∈Xs2.0. ∃X1∈Xs1.0. Pf X1 <=F[M1.0,M2.0] Qf X2
==> !set :Xs1.0 .. Pf <=F[M1.0,M2.0] !set :Xs2.0 .. Qf
lemma cspF_Rep_int_choice_sum_decompo_ALL_EX_eq:
[| ∀c1∈sumset C1.0. ∃c2∈sumset C2.0. Pf c1 =F[M1.0,M2.0] Qf c2;
∀c2∈sumset C2.0. ∃c1∈sumset C1.0. Pf c1 =F[M1.0,M2.0] Qf c2 |]
==> !! :C1.0 .. Pf =F[M1.0,M2.0] !! :C2.0 .. Qf
lemma cspF_Rep_int_choice_nat_decompo_ALL_EX_eq:
[| ∀n1∈N1.0. ∃n2∈N2.0. Pf n1 =F[M1.0,M2.0] Qf n2;
∀n2∈N2.0. ∃n1∈N1.0. Pf n1 =F[M1.0,M2.0] Qf n2 |]
==> !nat :N1.0 .. Pf =F[M1.0,M2.0] !nat :N2.0 .. Qf
lemma cspF_Rep_int_choice_set_decompo_ALL_EX_eq:
[| ∀X1∈Xs1.0. ∃X2∈Xs2.0. Pf X1 =F[M1.0,M2.0] Qf X2;
∀X2∈Xs2.0. ∃X1∈Xs1.0. Pf X1 =F[M1.0,M2.0] Qf X2 |]
==> !set :Xs1.0 .. Pf =F[M1.0,M2.0] !set :Xs2.0 .. Qf
lemma cspF_Rep_int_choice_decompo_ALL_EX_eq:
[| ∀c1∈sumset C1.0. ∃c2∈sumset C2.0. Pf c1 =F[M1.0,M2.0] Qf c2;
∀c2∈sumset C2.0. ∃c1∈sumset C1.0. Pf c1 =F[M1.0,M2.0] Qf c2 |]
==> !! :C1.0 .. Pf =F[M1.0,M2.0] !! :C2.0 .. Qf
[| ∀n1∈N1.0. ∃n2∈N2.0. Pf n1 =F[M1.0,M2.0] Qf n2;
∀n2∈N2.0. ∃n1∈N1.0. Pf n1 =F[M1.0,M2.0] Qf n2 |]
==> !nat :N1.0 .. Pf =F[M1.0,M2.0] !nat :N2.0 .. Qf
[| ∀X1∈Xs1.0. ∃X2∈Xs2.0. Pf X1 =F[M1.0,M2.0] Qf X2;
∀X2∈Xs2.0. ∃X1∈Xs1.0. Pf X1 =F[M1.0,M2.0] Qf X2 |]
==> !set :Xs1.0 .. Pf =F[M1.0,M2.0] !set :Xs2.0 .. Qf
lemma cspF_Rep_int_choice_decompo_ALL_EX:
∀c2∈sumset C2.0. ∃c1∈sumset C1.0. Pf c1 <=F[M1.0,M2.0] Qf c2
==> !! :C1.0 .. Pf <=F[M1.0,M2.0] !! :C2.0 .. Qf
∀n2∈N2.0. ∃n1∈N1.0. Pf n1 <=F[M1.0,M2.0] Qf n2
==> !nat :N1.0 .. Pf <=F[M1.0,M2.0] !nat :N2.0 .. Qf
∀X2∈Xs2.0. ∃X1∈Xs1.0. Pf X1 <=F[M1.0,M2.0] Qf X2
==> !set :Xs1.0 .. Pf <=F[M1.0,M2.0] !set :Xs2.0 .. Qf
[| ∀c1∈sumset C1.0. ∃c2∈sumset C2.0. Pf c1 =F[M1.0,M2.0] Qf c2;
∀c2∈sumset C2.0. ∃c1∈sumset C1.0. Pf c1 =F[M1.0,M2.0] Qf c2 |]
==> !! :C1.0 .. Pf =F[M1.0,M2.0] !! :C2.0 .. Qf
[| ∀n1∈N1.0. ∃n2∈N2.0. Pf n1 =F[M1.0,M2.0] Qf n2;
∀n2∈N2.0. ∃n1∈N1.0. Pf n1 =F[M1.0,M2.0] Qf n2 |]
==> !nat :N1.0 .. Pf =F[M1.0,M2.0] !nat :N2.0 .. Qf
[| ∀X1∈Xs1.0. ∃X2∈Xs2.0. Pf X1 =F[M1.0,M2.0] Qf X2;
∀X2∈Xs2.0. ∃X1∈Xs1.0. Pf X1 =F[M1.0,M2.0] Qf X2 |]
==> !set :Xs1.0 .. Pf =F[M1.0,M2.0] !set :Xs2.0 .. Qf