Up to index of Isabelle/HOL/HOL-Complex/CSP
theory Infra_real(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | November 2004 | | June 2005 (modified) | | July 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory Infra_real = Infra_common: (***************************************************** Real number *****************************************************) lemma real_mult_add_distrib: "(x::real) * (y + z) = x * y + x * z" apply (subgoal_tac "x * (y + z) = (y + z) * x") apply (simp add: real_add_mult_distrib) apply (simp add: real_mult_commute) done lemma real_mult_order_eq : "[| 0 <= x; 0 <= y |] ==> (0::real) <= x * y" apply (case_tac "x = 0", simp) apply (case_tac "y = 0", simp) apply (subgoal_tac "0 < x * y") apply (simp) apply (simp add: real_mult_order) done lemma real_div_le_eq: "0 < (z::real) ==> (x <= y / z) = (x * z <= y)" apply (rule iffI) apply (insert mult_right_mono[of x "y/z" z], simp) apply (insert real_mult_le_cancel_iff1[of z x "y/z"], simp) done lemma real_div_less_eq: "0 < (z::real) ==> (x < y / z) = (x * z < y)" apply (rule iffI) apply (insert real_mult_less_iff1[of z x "y/z"], simp) apply (insert mult_less_cancel_right[of x "y/z" z], simp) done lemma real_less_div_eq: "0 < (z::real) ==> (x / z < y) = (x < y * z)" apply (rule iffI) apply (insert real_mult_less_iff1[of z "x/z" y], simp) apply (insert mult_less_cancel_right[of "x/z" y z], simp) done lemma real_mult_div_commute: "[| (0::real) <= x ; 0 < y ; 0 < z ; 0 < r |] ==> (x < y * z / r) = (r * x / z < y)" apply (simp add: real_div_less_eq) apply (simp add: real_less_div_eq) apply (simp add: real_mult_commute) done lemma real_mult_div_commuteI: "[| (0::real) <= x ; 0 < y ; 0 < z ; 0 < r ; x < y * z / r |] ==> (r * x / z < y)" apply (simp add: real_mult_div_commute) done lemma real_mult_less_iff2: "(0::real) < z ==> (z*x < z*y) = (x < y)" by (simp add: real_mult_commute) lemma real_mult_less_if2: "[| (0::real) < z ; (x::real) < y |] ==> z*x < z*y" by (simp add: real_mult_less_iff2) lemma real_mult_less_if1: "[| (0::real) < z ; (x::real) < y |] ==> x*z < y*z" by (simp) (*** rev_power_decreasing ***) lemma rev_power_decreasing: "[| (0::real) < r ; r < 1 ; r ^ n <= r ^ m |] ==> m <= n" apply (case_tac "m <= n") apply (simp) (* else n < m --> contradiction *) apply (insert power_decreasing[of "Suc n" m r]) apply (simp) apply (subgoal_tac "r * r ^ n < 1 * r ^ n") apply (simp) apply (rule real_mult_less_if1) by (simp_all) (*** rev_power_decreasing_strict ***) lemma rev_power_decreasing_strict : "[| (0::real) < r ; r < 1 ; r ^ n < r ^ m |] ==> m < n" apply (case_tac "m < n") apply (simp) (* else n <= m --> contradiction *) apply (insert power_decreasing[of n m r]) by (simp) end
lemma real_mult_add_distrib:
x * (y + z) = x * y + x * z
lemma real_mult_order_eq:
[| 0 ≤ x; 0 ≤ y |] ==> 0 ≤ x * y
lemma real_div_le_eq:
0 < z ==> (x ≤ y / z) = (x * z ≤ y)
lemma real_div_less_eq:
0 < z ==> (x < y / z) = (x * z < y)
lemma real_less_div_eq:
0 < z ==> (x / z < y) = (x < y * z)
lemma real_mult_div_commute:
[| 0 ≤ x; 0 < y; 0 < z; 0 < r |] ==> (x < y * z / r) = (r * x / z < y)
lemma real_mult_div_commuteI:
[| 0 ≤ x; 0 < y; 0 < z; 0 < r; x < y * z / r |] ==> r * x / z < y
lemma real_mult_less_iff2:
0 < z ==> (z * x < z * y) = (x < y)
lemma real_mult_less_if2:
[| 0 < z; x < y |] ==> z * x < z * y
lemma real_mult_less_if1:
[| 0 < z; x < y |] ==> x * z < y * z
lemma rev_power_decreasing:
[| 0 < r; r < 1; r ^ n ≤ r ^ m |] ==> m ≤ n
lemma rev_power_decreasing_strict:
[| 0 < r; r < 1; r ^ n < r ^ m |] ==> m < n