Up to index of Isabelle/HOL/HOL-Complex/CSP
theory Infra_common (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| November 2004 |
| June 2005 (modified) |
| July 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| October 2005 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory Infra_common = Complex_Main:
(*****************************************************
Convenient technique for proofs
*****************************************************)
(*--------------------------*
| remove assumeption |
*--------------------------*)
lemma rem_asmE: "[| A ; R |] ==> R"
by simp
(*--------------------------*
| !!x. ==> ALL x. |
*--------------------------*)
lemma rev_all1E:
"[| !!x. P x ; ALL x. P x ==> S |] ==> S"
by (auto)
lemma rev_all2E:
"[| !!x y. P x y ; ALL x y. P x y ==> S |] ==> S"
by (auto)
lemma rev_all3E:
"[| !!x y z. P x y z ; ALL x y z. P x y z ==> S |] ==> S"
by (auto)
lemmas rev_allE = rev_all1E rev_all2E rev_all3E
lemma rev_allI: "ALL x. P x ==> (!!x. P x)"
by (auto)
end
lemma rem_asmE:
[| A; R |] ==> R
lemma rev_all1E:
[| !!x. P x; ∀x. P x ==> S |] ==> S
lemma rev_all2E:
[| !!x y. P x y; ∀x y. P x y ==> S |] ==> S
lemma rev_all3E:
[| !!x y z. P x y z; ∀x y z. P x y z ==> S |] ==> S
lemmas rev_allE:
[| !!x. P x; ∀x. P x ==> S |] ==> S
[| !!x y. P x y; ∀x y. P x y ==> S |] ==> S
[| !!x y z. P x y z; ∀x y z. P x y z ==> S |] ==> S
lemmas rev_allE:
[| !!x. P x; ∀x. P x ==> S |] ==> S
[| !!x y. P x y; ∀x y. P x y ==> S |] ==> S
[| !!x y z. P x y z; ∀x y z. P x y z ==> S |] ==> S
lemma rev_allI:
All P ==> P x