Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_tactic (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| December 2004 |
| February 2005 (modified) |
| June 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| October 2005 (modified) |
| April 2006 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_T_tactic = CSP_T_law + CSP_T_law_etc:
(*****************************************************************
1. tactic
2.
3.
4.
*****************************************************************)
(*================================================*
| |
| Tacticals |
| |
*================================================*)
lemmas cspT_all_dist = cspT_dist cspT_Dist cspT_Ext_dist
lemmas cspT_choice_IF = cspT_choice_rule cspT_IF
ML_setup {*
val CSPT_reflex = thms "cspT_reflex" ;
val CSPT_rw_flag_left = thms "cspT_rw_flag_left" ;
val CSPT_rw_flag_right = thms "cspT_rw_flag_right" ;
val CSPT_choice_IF = thms "cspT_choice_IF";
val CSPT_step = thms "cspT_step" ;
val CSPT_light_step = thms "cspT_light_step" ;
val CSPT_SKIP_DIV_resolve = thms "cspT_SKIP_DIV_resolve" ;
val CSPT_all_dist = thms "cspT_all_dist" ;
val CSPT_unwind = thms "cspT_unwind" ;
val CSPT_unwind_MU = thms "cspT_unwind_MU" ;
val CSPT_SKIP_DIV_sort = thms "cspT_SKIP_DIV_sort";
val CSPT_Ext_Int = thms "cspT_Ext_Int" ;
val CSPT_free_decompo_flag = thms "cspT_free_decompo_flag" ;
*}
(************************************************
sequentialising
************************************************)
(*-----------------------------------------------------*
apply (tactic {* cspT_hsf_main_tac 1 *})
is equal to
apply (( simp
| ((rule off_Not_Decompo_Flag)?,
( rule cspT_choice_IF
| rule cspT_SKIP_DIV_sort
| rule cspT_SKIP_DIV_resolve
| rule cspT_step
| rule cspT_all_dist
| rule cspT_unwind
| rule cspT_unwind_MU))
| (rule cspT_rw_flag_left, rule cspT_free_decompo_flag)
| ((rule off_Not_Decompo_Flag)?, rule cspT_reflex)
| (rule off_Not_Decompo_Flag_True))+ ,
(simp_all off_Not_Decompo_Flag_True))
*-----------------------------------------------------*)
(*** Head Sequential Form ***)
ML_setup {*
fun cspT_hsf_main_tac n =
CHANGED (
EVERY
[
REPEAT (
FIRST
[(CHANGED (asm_full_simp_tac (simpset ()) n)),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
FIRST [ resolve_tac CSPT_choice_IF n,
resolve_tac CSPT_SKIP_DIV_sort n,
resolve_tac CSPT_SKIP_DIV_resolve n,
resolve_tac CSPT_step n,
resolve_tac CSPT_all_dist n,
resolve_tac CSPT_unwind n,
resolve_tac CSPT_unwind_MU n ]]),
(EVERY [ resolve_tac CSPT_rw_flag_left n ,
resolve_tac CSPT_free_decompo_flag n ]),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
resolve_tac CSPT_reflex n ]),
(resolve_tac OFF_Not_Decompo_Flag_True n)]) ,
(ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))])
*}
(*** simp_with ***)
(*-----------------------------------------------------*
apply (tactic {* cspT_simp_with_main_tac "rulename" 1 *})
is equal to
apply (( simp
| ((rule off_Not_Decompo_Flag)?,
( rule cspT_rule_IF
| rule rulename))
| (rule cspT_rw_flag_left, rule cspT_free_decompo_flag)
| ((rule off_Not_Decompo_Flag)?, rule cspT_reflex),
| (rule off_Not_Decompo_Flag_True))+ ,
(simp add: rule off_Not_Decompo_Flag_True)?)
*-----------------------------------------------------*)
ML_setup {*
fun cspT_simp_with_main_tac a n =
let val A = thms a
in
CHANGED (
EVERY
[REPEAT (
FIRST
[(CHANGED (asm_full_simp_tac (simpset ()) n)),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
FIRST [ resolve_tac CSPT_choice_IF n,
resolve_tac A n ]]),
(EVERY [ resolve_tac CSPT_rw_flag_left n ,
resolve_tac CSPT_free_decompo_flag n ]),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
resolve_tac CSPT_reflex n ]),
(resolve_tac OFF_Not_Decompo_Flag_True n)]) ,
(ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))])
end
*}
(*** trace ***)
ML_setup {*
fun cspT_trace_eq_main_tac n =
CHANGED (
EVERY
[REPEAT (
FIRST
[(CHANGED (asm_full_simp_tac (simpset ()) n)),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
resolve_tac CSPT_Ext_Int n ]) ,
(EVERY [ resolve_tac CSPT_rw_flag_left n ,
resolve_tac CSPT_free_decompo_flag n ]),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
resolve_tac CSPT_reflex n ]),
(resolve_tac OFF_Not_Decompo_Flag_True n)]) ,
(ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))])
*}
(*** assumption ***)
ML_setup {*
fun cspT_asm_main_tac n =
CHANGED (
EVERY
[REPEAT (
FIRST
[(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
(CHANGED (assume_tac n)) ]) ,
(EVERY [ resolve_tac CSPT_rw_flag_left n ,
resolve_tac CSPT_free_decompo_flag n ]),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
resolve_tac CSPT_reflex n ]),
(resolve_tac OFF_Not_Decompo_Flag_True n)]) ,
TRY (FIRST[ resolve_tac OFF_Not_Decompo_Flag n,
resolve_tac OFF_Not_Decompo_Flag_True n])])
*}
(********* sub tactic of cspT_hsf_main_tac *********)
(*** step ***)
ML_setup {*
fun cspT_step_main_tac n =
CHANGED (
EVERY
[
REPEAT (
FIRST
[(CHANGED (asm_full_simp_tac (simpset ()) n)),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
FIRST [ resolve_tac CSPT_choice_IF n,
resolve_tac CSPT_SKIP_DIV_resolve n,
resolve_tac CSPT_step n ]]),
(EVERY [ resolve_tac CSPT_rw_flag_left n ,
resolve_tac CSPT_free_decompo_flag n ]),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
resolve_tac CSPT_reflex n ]),
(resolve_tac OFF_Not_Decompo_Flag_True n)]) ,
(ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))])
*}
(*** light step ***)
ML_setup {*
fun cspT_light_step_main_tac n =
CHANGED (
EVERY
[
REPEAT (
FIRST
[(CHANGED (asm_full_simp_tac (simpset ()) n)),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
FIRST [ resolve_tac CSPT_choice_IF n,
resolve_tac CSPT_light_step n ]]),
(EVERY [ resolve_tac CSPT_rw_flag_left n ,
resolve_tac CSPT_free_decompo_flag n ]),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
resolve_tac CSPT_reflex n ]),
(resolve_tac OFF_Not_Decompo_Flag_True n)]) ,
(ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))])
*}
(*** dist ***)
ML_setup {*
fun cspT_dist_main_tac n =
CHANGED (
EVERY
[
REPEAT (
FIRST
[(CHANGED (asm_full_simp_tac (simpset ()) n)),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
FIRST [ resolve_tac CSPT_choice_IF n,
resolve_tac CSPT_all_dist n ]]),
(EVERY [ resolve_tac CSPT_rw_flag_left n ,
resolve_tac CSPT_free_decompo_flag n ]),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
resolve_tac CSPT_reflex n ]),
(resolve_tac OFF_Not_Decompo_Flag_True n)]) ,
(ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))])
*}
(*** unwind ***)
ML_setup {*
fun cspT_unwind_main_tac n =
CHANGED (
EVERY
[
REPEAT (
FIRST
[(CHANGED (asm_full_simp_tac (simpset ()) n)),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
FIRST [ resolve_tac CSPT_choice_IF n,
resolve_tac CSPT_unwind n,
resolve_tac CSPT_unwind_MU n ]]),
(EVERY [ resolve_tac CSPT_rw_flag_left n ,
resolve_tac CSPT_free_decompo_flag n ]),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
resolve_tac CSPT_reflex n ]),
(resolve_tac OFF_Not_Decompo_Flag_True n)]) ,
(ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))])
*}
(*** sort ***)
ML_setup {*
fun cspT_sort_main_tac n =
CHANGED (
EVERY
[
REPEAT (
FIRST
[(CHANGED (asm_full_simp_tac (simpset ()) n)),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
FIRST [ resolve_tac CSPT_choice_IF n,
resolve_tac CSPT_SKIP_DIV_sort n ]]),
(EVERY [ resolve_tac CSPT_rw_flag_left n ,
resolve_tac CSPT_free_decompo_flag n ]),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
resolve_tac CSPT_reflex n ]),
(resolve_tac OFF_Not_Decompo_Flag_True n)]) ,
(ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))])
*}
(*** simp ***)
ML_setup {*
fun cspT_simp_main_tac n =
CHANGED (
EVERY
[
REPEAT (
FIRST
[(CHANGED (asm_full_simp_tac (simpset ()) n)),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
FIRST [ resolve_tac CSPT_choice_IF n ]]),
(EVERY [ resolve_tac CSPT_rw_flag_left n ,
resolve_tac CSPT_free_decompo_flag n ]),
(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n),
resolve_tac CSPT_reflex n ]),
(resolve_tac OFF_Not_Decompo_Flag_True n)]) ,
(ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))])
*}
(************************************************
rewrite left
************************************************)
(*** hsf ***)
ML_setup {*
fun cspT_hsf_left_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_left n,
cspT_hsf_main_tac n])
*}
(*** simp_with ***)
ML_setup {*
fun cspT_simp_with_left_tac a n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_left n,
cspT_simp_with_main_tac a n])
*}
(*** trace ***)
ML_setup {*
fun cspT_trace_eq_left_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_left n,
cspT_trace_eq_main_tac n])
*}
(*** assumption ***)
ML_setup {*
fun cspT_asm_left_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_left n,
cspT_asm_main_tac n])
*}
(*** step ***)
ML_setup {*
fun cspT_step_left_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_left n,
cspT_step_main_tac n])
*}
(*** light step ***)
ML_setup {*
fun cspT_light_step_left_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_left n,
cspT_light_step_main_tac n])
*}
(*** dist ***)
ML_setup {*
fun cspT_dist_left_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_left n,
cspT_dist_main_tac n])
*}
(*** unwind ***)
ML_setup {*
fun cspT_unwind_left_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_left n,
cspT_unwind_main_tac n])
*}
(*** sort ***)
ML_setup {*
fun cspT_sort_left_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_left n,
cspT_sort_main_tac n])
*}
(*** simp ***)
ML_setup {*
fun cspT_simp_left_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_left n,
cspT_simp_main_tac n])
*}
(************************************************
rewrite right
************************************************)
(*** hsf ***)
ML_setup {*
fun cspT_hsf_right_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_right n,
cspT_hsf_main_tac n])
*}
(*** simp_with ***)
ML_setup {*
fun cspT_simp_with_right_tac a n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_right n,
cspT_simp_with_main_tac a n])
*}
(*** trace ***)
ML_setup {*
fun cspT_trace_eq_right_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_right n,
cspT_trace_eq_main_tac n])
*}
(*** assumption ***)
ML_setup {*
fun cspT_asm_right_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_right n,
cspT_asm_main_tac n])
*}
(*** step ***)
ML_setup {*
fun cspT_step_right_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_right n,
cspT_step_main_tac n])
*}
(*** light step ***)
ML_setup {*
fun cspT_light_step_right_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_right n,
cspT_light_step_main_tac n])
*}
(*** dist ***)
ML_setup {*
fun cspT_dist_right_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_right n,
cspT_dist_main_tac n])
*}
(*** unwind ***)
ML_setup {*
fun cspT_unwind_right_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_right n,
cspT_unwind_main_tac n])
*}
(*** sort ***)
ML_setup {*
fun cspT_sort_right_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_right n,
cspT_sort_main_tac n])
*}
(*** simp ***)
ML_setup {*
fun cspT_simp_right_tac n =
CHANGED (
EVERY
[resolve_tac CSPT_rw_flag_right n,
cspT_simp_main_tac n])
*}
(************************************************
rewrite both
************************************************)
(*-----------------------------------------------------*
Apply (tactic {* cspT_hnf_tac n *})
is equal to
apply ((tactic {* cspT_hnf_left_tac n *})? ,
(tactic {* cspT_hnf_right_tac n *})?)
*-----------------------------------------------------*)
ML_setup {*
fun cspT_hsf_tac n =
CHANGED (
EVERY
[TRY (cspT_hsf_left_tac n),
TRY (cspT_hsf_right_tac n)])
*}
(*-----------------------------------------------------*
apply (tactic {* cspT_simp_with_tac a n *})
is equal to
apply ((tactic {* cspT_simp_with_left_tac a n *})? ,
(tactic {* cspT_simp_with_right_tac a n *})?)
*-----------------------------------------------------*)
ML_setup {*
fun cspT_simp_with_tac a n =
CHANGED (
EVERY
[TRY (cspT_simp_with_left_tac a n),
TRY (cspT_simp_with_right_tac a n)])
*}
(*-----------------------------------------------------*
apply (tactic {* cspT_asm_tac n *})
is equal to
apply ((tactic {* cspT_asm_left_tac n *})? ,
(tactic {* cspT_asm_right_tac n *})?)
*-----------------------------------------------------*)
ML_setup {*
fun cspT_trace_eq_tac n =
CHANGED (
EVERY
[TRY (cspT_trace_eq_left_tac n),
TRY (cspT_trace_eq_right_tac n)])
*}
ML_setup {*
fun cspT_asm_tac n =
CHANGED (
EVERY
[TRY (cspT_asm_left_tac n),
TRY (cspT_asm_right_tac n)])
*}
ML_setup {*
fun cspT_step_tac n =
CHANGED (
EVERY
[TRY (cspT_step_left_tac n),
TRY (cspT_step_right_tac n)])
*}
ML_setup {*
fun cspT_light_step_tac n =
CHANGED (
EVERY
[TRY (cspT_light_step_left_tac n),
TRY (cspT_light_step_right_tac n)])
*}
ML_setup {*
fun cspT_dist_tac n =
CHANGED (
EVERY
[TRY (cspT_dist_left_tac n),
TRY (cspT_dist_right_tac n)])
*}
ML_setup {*
fun cspT_unwind_tac n =
CHANGED (
EVERY
[TRY (cspT_unwind_left_tac n),
TRY (cspT_unwind_right_tac n)])
*}
ML_setup {*
fun cspT_sort_tac n =
CHANGED (
EVERY
[TRY (cspT_sort_left_tac n),
TRY (cspT_sort_right_tac n)])
*}
ML_setup {*
fun cspT_simp_tac n =
CHANGED (
EVERY
[TRY (cspT_simp_left_tac n),
TRY (cspT_simp_right_tac n)])
*}
end
lemmas cspT_all_dist:
(P1.0 |~| P2.0) [+] Q =T P1.0 [+] Q |~| P2.0 [+] Q
P [+] (Q1.0 |~| Q2.0) =T P [+] Q1.0 |~| P [+] Q2.0
(P1.0 |~| P2.0) |[X]| Q =T P1.0 |[X]| Q |~| P2.0 |[X]| Q
P |[X]| (Q1.0 |~| Q2.0) =T P |[X]| Q1.0 |~| P |[X]| Q2.0
(P1.0 |~| P2.0) -- X =T P1.0 -- X |~| P2.0 -- X
(P1.0 |~| P2.0) [[r]] =T P1.0 [[r]] |~| P2.0 [[r]]
(P1.0 |~| P2.0) ;; Q =T P1.0 ;; Q |~| P2.0 ;; Q
(P1.0 |~| P2.0) |. n =T P1.0 |. n |~| P2.0 |. n
!! c:C .. (Pf c |~| Qf c) =T !! :C .. Pf |~| !! :C .. Qf
(!! :C .. Pf) [+] Q =T IF (C = {}) THEN DIV [+] Q ELSE !! c:C .. Pf c [+] Q
P [+] (!! :C .. Qf) =T IF (C = {}) THEN P [+] DIV ELSE !! c:C .. P [+] Qf c
(!! :C .. Pf) |[X]| Q =T IF (C = {}) THEN DIV |[X]| Q ELSE !! c:C .. Pf c |[X]| Q
P |[X]| (!! :C .. Qf) =T IF (C = {}) THEN P |[X]| DIV ELSE !! c:C .. P |[X]| Qf c
(!! :C .. Pf) -- X =T !! c:C .. Pf c -- X
(!! :C .. Pf) [[r]] =T !! c:C .. Pf c [[r]]
(!! :C .. Pf) ;; Q =T !! c:C .. Pf c ;; Q
(!! :C .. Pf) |. n =T !! c:C .. Pf c |. n
(!!<f> :X .. Pf) [+] Q =T IF (X = {}) THEN DIV [+] Q ELSE !!<f> x:X .. Pf x [+] Q
P [+] (!!<f> :X .. Qf) =T IF (X = {}) THEN P [+] DIV ELSE !!<f> x:X .. P [+] Qf x
(!!<f> :Y .. Pf) |[X]| Q =T IF (Y = {}) THEN DIV |[X]| Q ELSE !!<f> x:Y .. Pf x |[X]| Q
P |[X]| (!!<f> :Y .. Qf) =T IF (Y = {}) THEN P |[X]| DIV ELSE !!<f> x:Y .. P |[X]| Qf x
(!!<f> :Y .. Pf) -- X =T !!<f> x:Y .. Pf x -- X
(!!<f> :X .. Pf) [[r]] =T !!<f> x:X .. Pf x [[r]]
(!!<f> :X .. Pf) ;; Q =T !!<f> x:X .. Pf x ;; Q
(!!<f> :X .. Pf) |. n =T !!<f> x:X .. Pf x |. n
(! :X .. Pf) [+] Q =T IF (X = {}) THEN DIV [+] Q ELSE ! x:X .. Pf x [+] Q
P [+] (! :X .. Qf) =T IF (X = {}) THEN P [+] DIV ELSE ! x:X .. P [+] Qf x
(! :Y .. Pf) |[X]| Q =T IF (Y = {}) THEN DIV |[X]| Q ELSE ! x:Y .. Pf x |[X]| Q
P |[X]| (! :Y .. Qf) =T IF (Y = {}) THEN P |[X]| DIV ELSE ! x:Y .. P |[X]| Qf x
(! :Y .. Pf) -- X =T ! x:Y .. Pf x -- X
(! :X .. Pf) [[r]] =T ! x:X .. Pf x [[r]]
(! :X .. Pf) ;; Q =T ! x:X .. Pf x ;; Q
(! :X .. Pf) |. n =T ! x:X .. Pf x |. n
(P1.0 [+] P2.0) [[r]] =T P1.0 [[r]] [+] P2.0 [[r]]
(P1.0 [+] P2.0) |. n =T P1.0 |. n [+] P2.0 |. n
lemmas cspT_all_dist:
(P1.0 |~| P2.0) [+] Q =T P1.0 [+] Q |~| P2.0 [+] Q
P [+] (Q1.0 |~| Q2.0) =T P [+] Q1.0 |~| P [+] Q2.0
(P1.0 |~| P2.0) |[X]| Q =T P1.0 |[X]| Q |~| P2.0 |[X]| Q
P |[X]| (Q1.0 |~| Q2.0) =T P |[X]| Q1.0 |~| P |[X]| Q2.0
(P1.0 |~| P2.0) -- X =T P1.0 -- X |~| P2.0 -- X
(P1.0 |~| P2.0) [[r]] =T P1.0 [[r]] |~| P2.0 [[r]]
(P1.0 |~| P2.0) ;; Q =T P1.0 ;; Q |~| P2.0 ;; Q
(P1.0 |~| P2.0) |. n =T P1.0 |. n |~| P2.0 |. n
!! c:C .. (Pf c |~| Qf c) =T !! :C .. Pf |~| !! :C .. Qf
(!! :C .. Pf) [+] Q =T IF (C = {}) THEN DIV [+] Q ELSE !! c:C .. Pf c [+] Q
P [+] (!! :C .. Qf) =T IF (C = {}) THEN P [+] DIV ELSE !! c:C .. P [+] Qf c
(!! :C .. Pf) |[X]| Q =T IF (C = {}) THEN DIV |[X]| Q ELSE !! c:C .. Pf c |[X]| Q
P |[X]| (!! :C .. Qf) =T IF (C = {}) THEN P |[X]| DIV ELSE !! c:C .. P |[X]| Qf c
(!! :C .. Pf) -- X =T !! c:C .. Pf c -- X
(!! :C .. Pf) [[r]] =T !! c:C .. Pf c [[r]]
(!! :C .. Pf) ;; Q =T !! c:C .. Pf c ;; Q
(!! :C .. Pf) |. n =T !! c:C .. Pf c |. n
(!!<f> :X .. Pf) [+] Q =T IF (X = {}) THEN DIV [+] Q ELSE !!<f> x:X .. Pf x [+] Q
P [+] (!!<f> :X .. Qf) =T IF (X = {}) THEN P [+] DIV ELSE !!<f> x:X .. P [+] Qf x
(!!<f> :Y .. Pf) |[X]| Q =T IF (Y = {}) THEN DIV |[X]| Q ELSE !!<f> x:Y .. Pf x |[X]| Q
P |[X]| (!!<f> :Y .. Qf) =T IF (Y = {}) THEN P |[X]| DIV ELSE !!<f> x:Y .. P |[X]| Qf x
(!!<f> :Y .. Pf) -- X =T !!<f> x:Y .. Pf x -- X
(!!<f> :X .. Pf) [[r]] =T !!<f> x:X .. Pf x [[r]]
(!!<f> :X .. Pf) ;; Q =T !!<f> x:X .. Pf x ;; Q
(!!<f> :X .. Pf) |. n =T !!<f> x:X .. Pf x |. n
(! :X .. Pf) [+] Q =T IF (X = {}) THEN DIV [+] Q ELSE ! x:X .. Pf x [+] Q
P [+] (! :X .. Qf) =T IF (X = {}) THEN P [+] DIV ELSE ! x:X .. P [+] Qf x
(! :Y .. Pf) |[X]| Q =T IF (Y = {}) THEN DIV |[X]| Q ELSE ! x:Y .. Pf x |[X]| Q
P |[X]| (! :Y .. Qf) =T IF (Y = {}) THEN P |[X]| DIV ELSE ! x:Y .. P |[X]| Qf x
(! :Y .. Pf) -- X =T ! x:Y .. Pf x -- X
(! :X .. Pf) [[r]] =T ! x:X .. Pf x [[r]]
(! :X .. Pf) ;; Q =T ! x:X .. Pf x ;; Q
(! :X .. Pf) |. n =T ! x:X .. Pf x |. n
(P1.0 [+] P2.0) [[r]] =T P1.0 [[r]] [+] P2.0 [[r]]
(P1.0 [+] P2.0) |. n =T P1.0 |. n [+] P2.0 |. n
lemmas cspT_choice_IF:
!! :{} .. Pf =T DIV
! :{} .. Pf =T DIV
!set :{} .. Pf =T DIV
!nat :{} .. Pf =T DIV
!! :{c} .. Pf =T Pf c
! :{a} .. Pf =T Pf a
!set :{X} .. Pf =T Pf X
!nat :{n} .. Pf =T Pf n
P |~| P =T P
!! c:C .. P =T IF (C = {}) THEN DIV ELSE P
! x:X .. P =T IF (X = {}) THEN DIV ELSE P
!set X:Xs .. P =T IF (Xs = {}) THEN DIV ELSE P
!nat n:N .. P =T IF (N = {}) THEN DIV ELSE P
? :{} -> Pf =T ? a:{} -> DIV
STOP [+] P =T P
? :{} -> Qf [+] P =T P
P [+] STOP =T P
P [+] ? :{} -> Qf =T P
P [+] P =T P
IF True THEN P ELSE Q =T P
IF False THEN P ELSE Q =T Q
lemmas cspT_choice_IF:
!! :{} .. Pf =T DIV
! :{} .. Pf =T DIV
!set :{} .. Pf =T DIV
!nat :{} .. Pf =T DIV
!! :{c} .. Pf =T Pf c
! :{a} .. Pf =T Pf a
!set :{X} .. Pf =T Pf X
!nat :{n} .. Pf =T Pf n
P |~| P =T P
!! c:C .. P =T IF (C = {}) THEN DIV ELSE P
! x:X .. P =T IF (X = {}) THEN DIV ELSE P
!set X:Xs .. P =T IF (Xs = {}) THEN DIV ELSE P
!nat n:N .. P =T IF (N = {}) THEN DIV ELSE P
? :{} -> Pf =T ? a:{} -> DIV
STOP [+] P =T P
? :{} -> Qf [+] P =T P
P [+] STOP =T P
P [+] ? :{} -> Qf =T P
P [+] P =T P
IF True THEN P ELSE Q =T P
IF False THEN P ELSE Q =T Q