Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law_aux(*-------------------------------------------* | CSP-Prover on Isabelle2005 | | April 2006 | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_T_law_aux = CSP_T_law: (*---------------------------------------------------------------* | | | convenient laws, especially for tactics | | | *---------------------------------------------------------------*) (***************************************************************** Internal *****************************************************************) (*------------------* | singleton | *------------------*) (*** ! :{a} ***) lemma cspT_Rep_int_choice0_singleton: "!! :{c} .. Pf =T Pf c" apply (rule cspT_Rep_int_choice_const) apply (auto) done lemma cspT_Rep_int_choice_fun_singleton: "inj f ==> !!<f> :{x} .. Pf =T Pf x" apply (simp add: Rep_int_choice_fun_def) apply (rule cspT_Rep_int_choice_const) apply (auto) done lemma cspT_Rep_int_choice1_singleton: "! :{a} .. Pf =T Pf a" apply (simp add: Rep_int_choice_com_def) apply (rule cspT_Rep_int_choice_const) apply (auto) done lemma cspT_Rep_int_choice2_singleton: "!set :{X} .. Pf =T Pf X" by (simp add: cspT_Rep_int_choice_fun_singleton) lemma cspT_Rep_int_choice3_singleton: "!nat :{n} .. Pf =T Pf n" by (simp add: cspT_Rep_int_choice_fun_singleton) lemmas cspT_Rep_int_choice_singleton = cspT_Rep_int_choice0_singleton cspT_Rep_int_choice1_singleton cspT_Rep_int_choice2_singleton cspT_Rep_int_choice3_singleton lemma cspT_Rep_int_choice_const0_rule: "!! c:C .. P =T IF (C={}) THEN DIV ELSE P" apply (case_tac "C={}") apply (simp) apply (rule cspT_rw_right) apply (rule cspT_IF) apply (rule cspT_Rep_int_choice_empty) apply (simp) apply (rule cspT_rw_right) apply (rule cspT_IF) apply (rule cspT_Rep_int_choice_const) apply (simp_all) done lemma cspT_Rep_int_choice_const_fun_rule: "!!<f> x:X .. P =T IF (X={}) THEN DIV ELSE P" apply (simp add: Rep_int_choice_fun_def) apply (rule cspT_rw_left) apply (rule cspT_Rep_int_choice_const0_rule) apply (rule cspT_decompo) apply (auto) done lemma cspT_Rep_int_choice_const1_rule: "! x:X .. P =T IF (X={}) THEN DIV ELSE P" apply (simp add: Rep_int_choice_com_def) apply (rule cspT_rw_left) apply (rule cspT_Rep_int_choice_const_fun_rule) apply (rule cspT_decompo) apply (auto) done lemma cspT_Rep_int_choice_const2_rule: "!set X:Xs .. P =T IF (Xs={}) THEN DIV ELSE P" by (simp add: cspT_Rep_int_choice_const_fun_rule) lemma cspT_Rep_int_choice_const3_rule: "!nat n:N .. P =T IF (N={}) THEN DIV ELSE P" by (simp add: cspT_Rep_int_choice_const_fun_rule) lemmas cspT_Rep_int_choice_const_rule = cspT_Rep_int_choice_const0_rule cspT_Rep_int_choice_const1_rule cspT_Rep_int_choice_const2_rule cspT_Rep_int_choice_const3_rule lemmas cspT_Int_choice_rule = cspT_Rep_int_choice_empty cspT_Rep_int_choice_singleton cspT_Int_choice_idem cspT_Rep_int_choice_const_rule (***************************************************************** External *****************************************************************) (* to make produced process be concrete *) lemma cspT_Ext_pre_choice_empty_DIV: "? :{} -> Pf =T ? a:{} -> DIV" apply (rule cspT_rw_left) apply (rule cspT_STOP_step[THEN cspT_sym]) apply (rule cspT_STOP_step) done lemma cspT_Ext_choice_unit_l_hsf: "? :{} -> Qf [+] P =T P" apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (rule cspT_step[THEN cspT_sym]) apply (rule cspT_reflex) apply (simp add: cspT_unit) done lemma cspT_Ext_choice_unit_r_hsf: "P [+] ? :{} -> Qf =T P" apply (rule cspT_rw_left) apply (rule cspT_commut) apply (simp add: cspT_Ext_choice_unit_l_hsf) done lemmas cspT_Ext_choice_rule = cspT_Ext_pre_choice_empty_DIV cspT_Ext_choice_unit_l cspT_Ext_choice_unit_l_hsf cspT_Ext_choice_unit_r cspT_Ext_choice_unit_r_hsf cspT_Ext_choice_idem (*-----------------------------* | simp rule for cspT | *-----------------------------*) lemmas cspT_choice_rule = cspT_Int_choice_rule cspT_Ext_choice_rule (***************************************************************** Timeout *****************************************************************) (*------------------* | csp law | *------------------*) (*** <= Timeout ***) lemma cspT_Timeout_right: "[| P <=T Q1 ; P <=T Q2 |] ==> P <=T Q1 [> Q2" apply (rule cspT_rw_right) apply (rule cspT_dist) apply (rule cspT_Int_choice_right) apply (rule cspT_Ext_choice_right, simp_all) apply (rule cspT_rw_right) apply (rule cspT_Ext_choice_unit_l, simp_all) done (*** STOP [> P = P ***) lemma cspT_STOP_Timeout: "STOP [> P =T P" apply (rule cspT_rw_left) apply (rule cspT_dist) apply (rule cspT_rw_left) apply (rule cspT_Int_choice_idem) apply (rule cspT_unit) done (*================================================* | | | auxiliary step laws | | | *================================================*) (* split + resolve *) lemma cspT_Parallel_Timeout_split_resolve_SKIP_or_DIV: "[| P = SKIP | P = DIV ; Q = SKIP | Q = DIV |] ==> ((? :Y -> Pf) [+] P) |[X]| ((? :Z -> Qf) [+] Q) =T (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] Q)) |~| (((? x:Y -> Pf x) [+] P) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] Q)) ELSE (((? x:Y -> Pf x) [+] P) |[X]| Qf x)) [> (((P |[X]| ((? :Z -> Qf) [+] Q)) |~| (((? :Y -> Pf) [+] P) |[X]| Q)))" apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (simp) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve) apply (simp) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve) apply (simp) apply (rule cspT_rw_left) apply (rule cspT_Parallel_Timeout_split) apply (rule cspT_decompo) apply (rule cspT_decompo) apply (rule cspT_decompo) apply (simp) apply (rule cspT_decompo) apply (simp) apply (simp) apply (rule cspT_decompo) apply (simp) apply (rule cspT_decompo) apply (rule cspT_decompo) apply (simp) apply (simp) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve[THEN cspT_sym]) apply (simp) apply (rule cspT_decompo) apply (simp) apply (simp) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve[THEN cspT_sym]) apply (simp) apply (simp) apply (rule cspT_decompo) apply (simp) apply (rule cspT_decompo) apply (simp) apply (simp) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve[THEN cspT_sym]) apply (simp) apply (rule cspT_decompo) apply (simp) apply (simp) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve[THEN cspT_sym]) apply (simp) apply (simp) apply (simp) apply (rule cspT_decompo) apply (rule cspT_decompo) apply (simp) apply (simp) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve[THEN cspT_sym]) apply (simp) apply (rule cspT_decompo) apply (simp) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve[THEN cspT_sym]) apply (simp) apply (simp) done lemma cspT_Parallel_Timeout_split_resolve_SKIP_SKIP: "((? :Y -> Pf) [+] SKIP) |[X]| ((? :Z -> Qf) [+] SKIP) =T (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] SKIP)) |~| (((? x:Y -> Pf x) [+] SKIP) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] SKIP)) ELSE (((? x:Y -> Pf x) [+] SKIP) |[X]| Qf x)) [> (((SKIP |[X]| ((? :Z -> Qf) [+] SKIP)) |~| (((? :Y -> Pf) [+] SKIP) |[X]| SKIP)))" by (simp add: cspT_Parallel_Timeout_split_resolve_SKIP_or_DIV) lemma cspT_Parallel_Timeout_split_resolve_DIV_DIV: "((? :Y -> Pf) [+] DIV) |[X]| ((? :Z -> Qf) [+] DIV) =T (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] DIV)) |~| (((? x:Y -> Pf x) [+] DIV) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] DIV)) ELSE (((? x:Y -> Pf x) [+] DIV) |[X]| Qf x)) [> (((DIV |[X]| ((? :Z -> Qf) [+] DIV)) |~| (((? :Y -> Pf) [+] DIV) |[X]| DIV)))" by (simp add: cspT_Parallel_Timeout_split_resolve_SKIP_or_DIV) lemma cspT_Parallel_Timeout_split_resolve_SKIP_DIV: "((? :Y -> Pf) [+] SKIP) |[X]| ((? :Z -> Qf) [+] DIV) =T (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] DIV)) |~| (((? x:Y -> Pf x) [+] SKIP) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] DIV)) ELSE (((? x:Y -> Pf x) [+] SKIP) |[X]| Qf x)) [> (((SKIP |[X]| ((? :Z -> Qf) [+] DIV)) |~| (((? :Y -> Pf) [+] SKIP) |[X]| DIV)))" by (simp add: cspT_Parallel_Timeout_split_resolve_SKIP_or_DIV) lemma cspT_Parallel_Timeout_split_resolve_DIV_SKIP: "((? :Y -> Pf) [+] DIV) |[X]| ((? :Z -> Qf) [+] SKIP) =T (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] SKIP)) |~| (((? x:Y -> Pf x) [+] DIV) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] SKIP)) ELSE (((? x:Y -> Pf x) [+] DIV) |[X]| Qf x)) [> (((DIV |[X]| ((? :Z -> Qf) [+] SKIP)) |~| (((? :Y -> Pf) [+] DIV) |[X]| SKIP)))" by (simp add: cspT_Parallel_Timeout_split_resolve_SKIP_or_DIV) lemmas cspT_Parallel_Timeout_split_resolve = cspT_Parallel_Timeout_split_resolve_SKIP_SKIP cspT_Parallel_Timeout_split_resolve_DIV_DIV cspT_Parallel_Timeout_split_resolve_SKIP_DIV cspT_Parallel_Timeout_split_resolve_DIV_SKIP (* input + resolve *) lemma cspT_Parallel_Timeout_input_resolve_SKIP_or_DIV_l: "P = SKIP | P = DIV ==> ((? :Y -> Pf) [+] P) |[X]| (? :Z -> Qf) =T (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| (? x:Z -> Qf x)) |~| (((? x:Y -> Pf x) [+] P) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| (? x:Z -> Qf x)) ELSE (((? x:Y -> Pf x) [+] P) |[X]| Qf x)) [> (((P |[X]| (? :Z -> Qf))))" apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (simp) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve) apply (simp) apply (rule cspT_reflex) apply (rule cspT_rw_left) apply (rule cspT_Parallel_Timeout_input) apply (rule cspT_decompo) apply (rule cspT_decompo) apply (rule cspT_decompo) apply (simp) apply (rule cspT_decompo) apply (simp) apply (simp) apply (rule cspT_decompo) apply (simp) apply (rule cspT_decompo) apply (simp) apply (rule cspT_decompo) apply (simp) apply (simp) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve[THEN cspT_sym]) apply (simp) apply (simp) apply (rule cspT_decompo) apply (simp) apply (simp) apply (rule cspT_decompo) apply (simp) apply (simp) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve[THEN cspT_sym]) apply (simp) apply (simp) apply (simp) apply (simp) done lemma cspT_Parallel_Timeout_input_resolve_SKIP_or_DIV_r: "Q = SKIP | Q = DIV ==> (? :Y -> Pf) |[X]| ((? :Z -> Qf) [+] Q) =T (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] Q)) |~| ((? x:Y -> Pf x) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] Q)) ELSE ((? x:Y -> Pf x) |[X]| Qf x)) [> ((((? :Y -> Pf) |[X]| Q)))" apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (simp) apply (rule cspT_reflex) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve) apply (simp) apply (rule cspT_rw_left) apply (rule cspT_Parallel_Timeout_input) apply (rule cspT_decompo) apply (rule cspT_decompo) apply (rule cspT_decompo) apply (simp) apply (rule cspT_decompo) apply (simp) apply (simp) apply (rule cspT_decompo) apply (simp) apply (rule cspT_decompo) apply (rule cspT_decompo) apply (simp) apply (simp) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve[THEN cspT_sym]) apply (simp) apply (simp) apply (rule cspT_decompo) apply (simp) apply (simp) apply (rule cspT_decompo) apply (simp) apply (simp) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve[THEN cspT_sym]) apply (simp) apply (simp) apply (simp) apply (simp) done lemmas cspT_Parallel_Timeout_input_resolve_SKIP_or_DIV = cspT_Parallel_Timeout_input_resolve_SKIP_or_DIV_l cspT_Parallel_Timeout_input_resolve_SKIP_or_DIV_r lemma cspT_Parallel_Timeout_input_resolve_SKIP_l: "((? :Y -> Pf) [+] SKIP) |[X]| (? :Z -> Qf) =T (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| (? x:Z -> Qf x)) |~| (((? x:Y -> Pf x) [+] SKIP) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| (? x:Z -> Qf x)) ELSE (((? x:Y -> Pf x) [+] SKIP) |[X]| Qf x)) [> (((SKIP |[X]| (? :Z -> Qf))))" by (simp add: cspT_Parallel_Timeout_input_resolve_SKIP_or_DIV) lemma cspT_Parallel_Timeout_input_resolve_DIV_l: "((? :Y -> Pf) [+] DIV) |[X]| (? :Z -> Qf) =T (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| (? x:Z -> Qf x)) |~| (((? x:Y -> Pf x) [+] DIV) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| (? x:Z -> Qf x)) ELSE (((? x:Y -> Pf x) [+] DIV) |[X]| Qf x)) [> (((DIV |[X]| (? :Z -> Qf))))" by (simp add: cspT_Parallel_Timeout_input_resolve_SKIP_or_DIV) lemma cspT_Parallel_Timeout_input_resolve_SKIP_r: "(? :Y -> Pf) |[X]| ((? :Z -> Qf) [+] SKIP) =T (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] SKIP)) |~| ((? x:Y -> Pf x) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] SKIP)) ELSE ((? x:Y -> Pf x) |[X]| Qf x)) [> ((((? :Y -> Pf) |[X]| SKIP)))" by (simp add: cspT_Parallel_Timeout_input_resolve_SKIP_or_DIV) lemma cspT_Parallel_Timeout_input_resolve_DIV_r: "(? :Y -> Pf) |[X]| ((? :Z -> Qf) [+] DIV) =T (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] DIV)) |~| ((? x:Y -> Pf x) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] DIV)) ELSE ((? x:Y -> Pf x) |[X]| Qf x)) [> ((((? :Y -> Pf) |[X]| DIV)))" by (simp add: cspT_Parallel_Timeout_input_resolve_SKIP_or_DIV) lemmas cspT_Parallel_Timeout_input_resolve = cspT_Parallel_Timeout_input_resolve_SKIP_l cspT_Parallel_Timeout_input_resolve_SKIP_r cspT_Parallel_Timeout_input_resolve_DIV_l cspT_Parallel_Timeout_input_resolve_DIV_r (**************** ;; + resolve ****************) lemma cspT_SKIP_Seq_compo_step_resolve: "((? :X -> Pf) [+] SKIP) ;; Q =T (? x:X -> (Pf x ;; Q)) [> Q" apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve) apply (simp) apply (rule cspT_reflex) apply (rule cspT_SKIP_Seq_compo_step) done lemma cspT_DIV_Seq_compo_step_resolve: "((? :X -> Pf) [+] DIV) ;; Q =T (? x:X -> (Pf x ;; Q)) [+] DIV" apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (rule cspT_Ext_choice_SKIP_or_DIV_resolve) apply (simp) apply (rule cspT_reflex) apply (rule cspT_rw_left) apply (rule cspT_DIV_Seq_compo_step) apply (rule cspT_Ext_choice_SKIP_DIV_resolve[THEN cspT_sym]) done lemmas cspT_SKIP_DIV_Seq_compo_step_resolve = cspT_SKIP_Seq_compo_step_resolve cspT_DIV_Seq_compo_step_resolve (****** for sequentilising processes with SKIP or DIV ******) lemmas cspT_SKIP_DIV_resolve = cspT_SKIP_DIV cspT_Parallel_Timeout_split_resolve cspT_Parallel_Timeout_input_resolve cspT_SKIP_DIV_Seq_compo_step_resolve lemmas cspT_SKIP_or_DIV_resolve = cspT_Parallel_Timeout_split_resolve_SKIP_or_DIV cspT_Parallel_Timeout_input_resolve_SKIP_or_DIV (*==============================================================* | | | Associativity and Commutativity for SKIP and DIV | | (for sequentialising) | | | *==============================================================*) lemma cspT_Ext_pre_choice_SKIP_commut: "SKIP [+] (? :X -> Pf) =T (? :X -> Pf) [+] SKIP" by (rule cspT_commut) lemma cspT_Ext_pre_choice_DIV_commut: "DIV [+] (? :X -> Pf) =T (? :X -> Pf) [+] DIV" by (rule cspT_commut) lemma cspT_Ext_pre_choice_SKIP_assoc: "((? :X -> Pf) [+] SKIP) [+] (? :Y -> Qf) =T ((? :X -> Pf) [+] (? :Y -> Qf)) [+] SKIP" apply (rule cspT_rw_left) apply (rule cspT_assoc[THEN cspT_sym]) apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (rule cspT_reflex) apply (rule cspT_commut) apply (rule cspT_assoc) done lemma cspT_Ext_pre_choice_DIV_assoc: "((? :X -> Pf) [+] DIV) [+] (? :Y -> Qf) =T ((? :X -> Pf) [+] (? :Y -> Qf)) [+] DIV" apply (rule cspT_rw_left) apply (rule cspT_assoc[THEN cspT_sym]) apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (rule cspT_reflex) apply (rule cspT_commut) apply (rule cspT_assoc) done lemma cspT_Ext_choice_idem_assoc: "(P [+] Q) [+] Q =T (P [+] Q)" apply (rule cspT_rw_left) apply (rule cspT_assoc[THEN cspT_sym]) apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (rule cspT_reflex) apply (rule cspT_idem) apply (rule cspT_reflex) done lemma cspT_Ext_choice_SKIP_DIV_assoc: "(P [+] SKIP) [+] DIV =T (P [+] SKIP)" apply (rule cspT_rw_left) apply (rule cspT_assoc[THEN cspT_sym]) apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (rule cspT_reflex) apply (rule cspT_SKIP_DIV) apply (rule cspT_reflex) done lemma cspT_Ext_choice_DIV_SKIP_assoc: "(P [+] DIV) [+] SKIP =T (P [+] SKIP)" apply (rule cspT_rw_left) apply (rule cspT_assoc[THEN cspT_sym]) apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (rule cspT_reflex) apply (rule cspT_SKIP_DIV) apply (rule cspT_reflex) done lemmas cspT_SKIP_DIV_sort = cspT_Ext_choice_assoc cspT_Ext_pre_choice_SKIP_commut cspT_Ext_pre_choice_DIV_commut cspT_Ext_pre_choice_SKIP_assoc cspT_Ext_pre_choice_DIV_assoc cspT_Ext_choice_idem_assoc cspT_Ext_choice_SKIP_DIV_assoc cspT_Ext_choice_DIV_SKIP_assoc (*==============================================================* | | | decompostion control by the flag "Not_Decompo_Flag" | | | *==============================================================*) (*------------------------------------------------* | trans with Flag | *------------------------------------------------*) (*** rewrite (eq) ***) lemma cspT_rw_flag_left_eq: "[| R1 =T R2 ; Not_Decompo_Flag & R2 =T R3 |] ==> R1 =T R3" by (simp add: eqT_def Not_Decompo_Flag_def) lemma cspT_rw_flag_left_ref: "[| R1 =T R2 ; Not_Decompo_Flag & R2 <=T R3 |] ==> R1 <=T R3" by (simp add: refT_def eqT_def Not_Decompo_Flag_def) lemmas cspT_rw_flag_left = cspT_rw_flag_left_eq cspT_rw_flag_left_ref lemma cspT_rw_flag_right_eq: "[| R3 =T R2 ; Not_Decompo_Flag & R1 =T R2 |] ==> R1 =T R3" by (simp add: eqT_def Not_Decompo_Flag_def) lemma cspT_rw_flag_right_ref: "[| R3 =T R2 ; Not_Decompo_Flag & R1 <=T R2 |] ==> R1 <=T R3" by (simp add: refT_def eqT_def Not_Decompo_Flag_def) lemmas cspT_rw_flag_right = cspT_rw_flag_right_eq cspT_rw_flag_right_ref (*==============================================================* | decompostion of Sequential composition with a flag | | It is often useful that the second process is not expanded. | *==============================================================*) lemma cspT_Seq_compo_mono_flag: "[| P1 <=T Q1 ; Not_Decompo_Flag & P2 <=T Q2 |] ==> P1 ;; P2 <=T Q1 ;; Q2" by (simp add: cspT_Seq_compo_mono) lemma cspT_Seq_compo_cong_flag: "[| P1 =T Q1 ; Not_Decompo_Flag & P2 =T Q2 |] ==> P1 ;; P2 =T Q1 ;; Q2" by (simp add: cspT_Seq_compo_cong) lemmas cspT_free_mono_flag = cspT_Ext_choice_mono cspT_Int_choice_mono cspT_Parallel_mono cspT_Hiding_mono cspT_Renaming_mono cspT_Seq_compo_mono_flag cspT_Depth_rest_mono lemmas cspT_free_cong_flag = cspT_Ext_choice_cong cspT_Int_choice_cong cspT_Parallel_cong cspT_Hiding_cong cspT_Renaming_cong cspT_Seq_compo_cong_flag cspT_Depth_rest_cong lemmas cspT_free_decompo_flag = cspT_free_mono_flag cspT_free_cong_flag end
lemma cspT_Rep_int_choice0_singleton:
!! :{c} .. Pf =T Pf c
lemma cspT_Rep_int_choice_fun_singleton:
inj f ==> !!<f> :{x} .. Pf =T Pf x
lemma cspT_Rep_int_choice1_singleton:
! :{a} .. Pf =T Pf a
lemma cspT_Rep_int_choice2_singleton:
!set :{X} .. Pf =T Pf X
lemma cspT_Rep_int_choice3_singleton:
!nat :{n} .. Pf =T Pf n
lemmas cspT_Rep_int_choice_singleton:
!! :{c} .. Pf =T Pf c
! :{a} .. Pf =T Pf a
!set :{X} .. Pf =T Pf X
!nat :{n} .. Pf =T Pf n
lemmas cspT_Rep_int_choice_singleton:
!! :{c} .. Pf =T Pf c
! :{a} .. Pf =T Pf a
!set :{X} .. Pf =T Pf X
!nat :{n} .. Pf =T Pf n
lemma cspT_Rep_int_choice_const0_rule:
!! c:C .. P =T IF (C = {}) THEN DIV ELSE P
lemma cspT_Rep_int_choice_const_fun_rule:
!!<f> x:X .. P =T IF (X = {}) THEN DIV ELSE P
lemma cspT_Rep_int_choice_const1_rule:
! x:X .. P =T IF (X = {}) THEN DIV ELSE P
lemma cspT_Rep_int_choice_const2_rule:
!set X:Xs .. P =T IF (Xs = {}) THEN DIV ELSE P
lemma cspT_Rep_int_choice_const3_rule:
!nat n:N .. P =T IF (N = {}) THEN DIV ELSE P
lemmas cspT_Rep_int_choice_const_rule:
!! c:C .. P =T IF (C = {}) THEN DIV ELSE P
! x:X .. P =T IF (X = {}) THEN DIV ELSE P
!set X:Xs .. P =T IF (Xs = {}) THEN DIV ELSE P
!nat n:N .. P =T IF (N = {}) THEN DIV ELSE P
lemmas cspT_Rep_int_choice_const_rule:
!! c:C .. P =T IF (C = {}) THEN DIV ELSE P
! x:X .. P =T IF (X = {}) THEN DIV ELSE P
!set X:Xs .. P =T IF (Xs = {}) THEN DIV ELSE P
!nat n:N .. P =T IF (N = {}) THEN DIV ELSE P
lemmas cspT_Int_choice_rule:
!! :{} .. Pf =T DIV
! :{} .. Pf =T DIV
!set :{} .. Pf =T DIV
!nat :{} .. Pf =T DIV
!! :{c} .. Pf =T Pf c
! :{a} .. Pf =T Pf a
!set :{X} .. Pf =T Pf X
!nat :{n} .. Pf =T Pf n
P |~| P =T P
!! c:C .. P =T IF (C = {}) THEN DIV ELSE P
! x:X .. P =T IF (X = {}) THEN DIV ELSE P
!set X:Xs .. P =T IF (Xs = {}) THEN DIV ELSE P
!nat n:N .. P =T IF (N = {}) THEN DIV ELSE P
lemmas cspT_Int_choice_rule:
!! :{} .. Pf =T DIV
! :{} .. Pf =T DIV
!set :{} .. Pf =T DIV
!nat :{} .. Pf =T DIV
!! :{c} .. Pf =T Pf c
! :{a} .. Pf =T Pf a
!set :{X} .. Pf =T Pf X
!nat :{n} .. Pf =T Pf n
P |~| P =T P
!! c:C .. P =T IF (C = {}) THEN DIV ELSE P
! x:X .. P =T IF (X = {}) THEN DIV ELSE P
!set X:Xs .. P =T IF (Xs = {}) THEN DIV ELSE P
!nat n:N .. P =T IF (N = {}) THEN DIV ELSE P
lemma cspT_Ext_pre_choice_empty_DIV:
? :{} -> Pf =T ? a:{} -> DIV
lemma cspT_Ext_choice_unit_l_hsf:
? :{} -> Qf [+] P =T P
lemma cspT_Ext_choice_unit_r_hsf:
P [+] ? :{} -> Qf =T P
lemmas cspT_Ext_choice_rule:
? :{} -> Pf =T ? a:{} -> DIV
STOP [+] P =T P
? :{} -> Qf [+] P =T P
P [+] STOP =T P
P [+] ? :{} -> Qf =T P
P [+] P =T P
lemmas cspT_Ext_choice_rule:
? :{} -> Pf =T ? a:{} -> DIV
STOP [+] P =T P
? :{} -> Qf [+] P =T P
P [+] STOP =T P
P [+] ? :{} -> Qf =T P
P [+] P =T P
lemmas cspT_choice_rule:
!! :{} .. Pf =T DIV
! :{} .. Pf =T DIV
!set :{} .. Pf =T DIV
!nat :{} .. Pf =T DIV
!! :{c} .. Pf =T Pf c
! :{a} .. Pf =T Pf a
!set :{X} .. Pf =T Pf X
!nat :{n} .. Pf =T Pf n
P |~| P =T P
!! c:C .. P =T IF (C = {}) THEN DIV ELSE P
! x:X .. P =T IF (X = {}) THEN DIV ELSE P
!set X:Xs .. P =T IF (Xs = {}) THEN DIV ELSE P
!nat n:N .. P =T IF (N = {}) THEN DIV ELSE P
? :{} -> Pf =T ? a:{} -> DIV
STOP [+] P =T P
? :{} -> Qf [+] P =T P
P [+] STOP =T P
P [+] ? :{} -> Qf =T P
P [+] P =T P
lemmas cspT_choice_rule:
!! :{} .. Pf =T DIV
! :{} .. Pf =T DIV
!set :{} .. Pf =T DIV
!nat :{} .. Pf =T DIV
!! :{c} .. Pf =T Pf c
! :{a} .. Pf =T Pf a
!set :{X} .. Pf =T Pf X
!nat :{n} .. Pf =T Pf n
P |~| P =T P
!! c:C .. P =T IF (C = {}) THEN DIV ELSE P
! x:X .. P =T IF (X = {}) THEN DIV ELSE P
!set X:Xs .. P =T IF (Xs = {}) THEN DIV ELSE P
!nat n:N .. P =T IF (N = {}) THEN DIV ELSE P
? :{} -> Pf =T ? a:{} -> DIV
STOP [+] P =T P
? :{} -> Qf [+] P =T P
P [+] STOP =T P
P [+] ? :{} -> Qf =T P
P [+] P =T P
lemma cspT_Timeout_right:
[| P <=T Q1.0; P <=T Q2.0 |] ==> P <=T Q1.0 [> Q2.0
lemma cspT_STOP_Timeout:
STOP [> P =T P
lemma cspT_Parallel_Timeout_split_resolve_SKIP_or_DIV:
[| P = SKIP ∨ P = DIV; Q = SKIP ∨ Q = DIV |] ==> (? :Y -> Pf [+] P) |[X]| (? :Z -> Qf [+] Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] Q) |~| (? :Y -> Pf [+] P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] Q) ELSE (? :Y -> Pf [+] P) |[X]| Qf x [> (P |[X]| (? :Z -> Qf [+] Q) |~| (? :Y -> Pf [+] P) |[X]| Q)
lemma cspT_Parallel_Timeout_split_resolve_SKIP_SKIP:
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] SKIP) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) ELSE (? :Y -> Pf [+] SKIP) |[X]| Qf x [> (SKIP |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] SKIP) |[X]| SKIP)
lemma cspT_Parallel_Timeout_split_resolve_DIV_DIV:
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] DIV) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] DIV) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) ELSE (? :Y -> Pf [+] DIV) |[X]| Qf x [> (DIV |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] DIV) |[X]| DIV)
lemma cspT_Parallel_Timeout_split_resolve_SKIP_DIV:
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] DIV) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) ELSE (? :Y -> Pf [+] SKIP) |[X]| Qf x [> (SKIP |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] SKIP) |[X]| DIV)
lemma cspT_Parallel_Timeout_split_resolve_DIV_SKIP:
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] SKIP) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] DIV) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) ELSE (? :Y -> Pf [+] DIV) |[X]| Qf x [> (DIV |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] DIV) |[X]| SKIP)
lemmas cspT_Parallel_Timeout_split_resolve:
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] SKIP) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) ELSE (? :Y -> Pf [+] SKIP) |[X]| Qf x [> (SKIP |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] SKIP) |[X]| SKIP)
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] DIV) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] DIV) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) ELSE (? :Y -> Pf [+] DIV) |[X]| Qf x [> (DIV |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] DIV) |[X]| DIV)
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] DIV) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) ELSE (? :Y -> Pf [+] SKIP) |[X]| Qf x [> (SKIP |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] SKIP) |[X]| DIV)
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] SKIP) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] DIV) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) ELSE (? :Y -> Pf [+] DIV) |[X]| Qf x [> (DIV |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] DIV) |[X]| SKIP)
lemmas cspT_Parallel_Timeout_split_resolve:
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] SKIP) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) ELSE (? :Y -> Pf [+] SKIP) |[X]| Qf x [> (SKIP |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] SKIP) |[X]| SKIP)
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] DIV) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] DIV) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) ELSE (? :Y -> Pf [+] DIV) |[X]| Qf x [> (DIV |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] DIV) |[X]| DIV)
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] DIV) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) ELSE (? :Y -> Pf [+] SKIP) |[X]| Qf x [> (SKIP |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] SKIP) |[X]| DIV)
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] SKIP) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] DIV) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) ELSE (? :Y -> Pf [+] DIV) |[X]| Qf x [> (DIV |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] DIV) |[X]| SKIP)
lemma cspT_Parallel_Timeout_input_resolve_SKIP_or_DIV_l:
P = SKIP ∨ P = DIV ==> (? :Y -> Pf [+] P) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [+] P) |[X]| Qf x [> P |[X]| ? :Z -> Qf
lemma cspT_Parallel_Timeout_input_resolve_SKIP_or_DIV_r:
Q = SKIP ∨ Q = DIV ==> ? :Y -> Pf |[X]| (? :Z -> Qf [+] Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] Q) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] Q) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| Q
lemmas cspT_Parallel_Timeout_input_resolve_SKIP_or_DIV:
P = SKIP ∨ P = DIV ==> (? :Y -> Pf [+] P) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [+] P) |[X]| Qf x [> P |[X]| ? :Z -> Qf
Q = SKIP ∨ Q = DIV ==> ? :Y -> Pf |[X]| (? :Z -> Qf [+] Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] Q) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] Q) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| Q
lemmas cspT_Parallel_Timeout_input_resolve_SKIP_or_DIV:
P = SKIP ∨ P = DIV ==> (? :Y -> Pf [+] P) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [+] P) |[X]| Qf x [> P |[X]| ? :Z -> Qf
Q = SKIP ∨ Q = DIV ==> ? :Y -> Pf |[X]| (? :Z -> Qf [+] Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] Q) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] Q) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| Q
lemma cspT_Parallel_Timeout_input_resolve_SKIP_l:
(? :Y -> Pf [+] SKIP) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [+] SKIP) |[X]| Qf x [> SKIP |[X]| ? :Z -> Qf
lemma cspT_Parallel_Timeout_input_resolve_DIV_l:
(? :Y -> Pf [+] DIV) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] DIV) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [+] DIV) |[X]| Qf x [> DIV |[X]| ? :Z -> Qf
lemma cspT_Parallel_Timeout_input_resolve_SKIP_r:
? :Y -> Pf |[X]| (? :Z -> Qf [+] SKIP) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| SKIP
lemma cspT_Parallel_Timeout_input_resolve_DIV_r:
? :Y -> Pf |[X]| (? :Z -> Qf [+] DIV) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| DIV
lemmas cspT_Parallel_Timeout_input_resolve:
(? :Y -> Pf [+] SKIP) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [+] SKIP) |[X]| Qf x [> SKIP |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [+] SKIP) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| SKIP
(? :Y -> Pf [+] DIV) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] DIV) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [+] DIV) |[X]| Qf x [> DIV |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [+] DIV) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| DIV
lemmas cspT_Parallel_Timeout_input_resolve:
(? :Y -> Pf [+] SKIP) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [+] SKIP) |[X]| Qf x [> SKIP |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [+] SKIP) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| SKIP
(? :Y -> Pf [+] DIV) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] DIV) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [+] DIV) |[X]| Qf x [> DIV |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [+] DIV) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| DIV
lemma cspT_SKIP_Seq_compo_step_resolve:
(? :X -> Pf [+] SKIP) ;; Q =T ? x:X -> (Pf x ;; Q) [> Q
lemma cspT_DIV_Seq_compo_step_resolve:
(? :X -> Pf [+] DIV) ;; Q =T ? x:X -> (Pf x ;; Q) [+] DIV
lemmas cspT_SKIP_DIV_Seq_compo_step_resolve:
(? :X -> Pf [+] SKIP) ;; Q =T ? x:X -> (Pf x ;; Q) [> Q
(? :X -> Pf [+] DIV) ;; Q =T ? x:X -> (Pf x ;; Q) [+] DIV
lemmas cspT_SKIP_DIV_Seq_compo_step_resolve:
(? :X -> Pf [+] SKIP) ;; Q =T ? x:X -> (Pf x ;; Q) [> Q
(? :X -> Pf [+] DIV) ;; Q =T ? x:X -> (Pf x ;; Q) [+] DIV
lemmas cspT_SKIP_DIV_resolve:
SKIP |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (SKIP |[X]| Qf x)
? :Y -> Pf |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP)
DIV |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
? :Y -> Pf |[X]| DIV =T ? x:(Y - X) -> (Pf x |[X]| DIV) [+] DIV
SKIP [+] DIV =T SKIP
DIV [+] SKIP =T SKIP
SKIP |[X]| DIV =T DIV
DIV |[X]| SKIP =T DIV
SKIP |[X]| SKIP =T SKIP
DIV |[X]| DIV =T DIV
(? :Y -> Pf [+] SKIP) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] SKIP
SKIP |[X]| (? :Y -> Pf [+] SKIP) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] SKIP
(? :Y -> Pf [+] DIV) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] DIV
SKIP |[X]| (? :Y -> Pf [+] DIV) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] DIV
(P [+] SKIP) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] SKIP) =T DIV |[X]| P
(P [+] DIV) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] DIV) =T DIV |[X]| P
SKIP -- X =T SKIP
DIV -- X =T DIV
(? :Y -> Pf [+] DIV) -- X =T ? x:(Y - X) -> Pf x -- X [+] DIV |~| ! x:(Y ∩ X) .. Pf x -- X
(? :Y -> Pf [+] SKIP) -- X =T ? x:(Y - X) -> Pf x -- X [+] SKIP |~| ! x:(Y ∩ X) .. Pf x -- X
SKIP [[r]] =T SKIP
DIV [[r]] =T DIV
SKIP ;; P =T P
P ;; SKIP =T P
DIV ;; P =T DIV
(? :X -> Pf [> SKIP) ;; Q =T ? x:X -> (Pf x ;; Q) [> Q
(? :X -> Pf [> DIV) ;; Q =T ? x:X -> (Pf x ;; Q) [> DIV
SKIP |. Suc n =T SKIP
DIV |. n =T DIV
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] SKIP) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) ELSE (? :Y -> Pf [+] SKIP) |[X]| Qf x [> (SKIP |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] SKIP) |[X]| SKIP)
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] DIV) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] DIV) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) ELSE (? :Y -> Pf [+] DIV) |[X]| Qf x [> (DIV |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] DIV) |[X]| DIV)
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] DIV) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) ELSE (? :Y -> Pf [+] SKIP) |[X]| Qf x [> (SKIP |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] SKIP) |[X]| DIV)
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] SKIP) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] DIV) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) ELSE (? :Y -> Pf [+] DIV) |[X]| Qf x [> (DIV |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] DIV) |[X]| SKIP)
(? :Y -> Pf [+] SKIP) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [+] SKIP) |[X]| Qf x [> SKIP |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [+] SKIP) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| SKIP
(? :Y -> Pf [+] DIV) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] DIV) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [+] DIV) |[X]| Qf x [> DIV |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [+] DIV) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| DIV
(? :X -> Pf [+] SKIP) ;; Q =T ? x:X -> (Pf x ;; Q) [> Q
(? :X -> Pf [+] DIV) ;; Q =T ? x:X -> (Pf x ;; Q) [+] DIV
lemmas cspT_SKIP_DIV_resolve:
SKIP |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (SKIP |[X]| Qf x)
? :Y -> Pf |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP)
DIV |[X]| ? :Y -> Qf =T ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
? :Y -> Pf |[X]| DIV =T ? x:(Y - X) -> (Pf x |[X]| DIV) [+] DIV
SKIP [+] DIV =T SKIP
DIV [+] SKIP =T SKIP
SKIP |[X]| DIV =T DIV
DIV |[X]| SKIP =T DIV
SKIP |[X]| SKIP =T SKIP
DIV |[X]| DIV =T DIV
(? :Y -> Pf [+] SKIP) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] SKIP
SKIP |[X]| (? :Y -> Pf [+] SKIP) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] SKIP
(? :Y -> Pf [+] DIV) |[X]| SKIP =T ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] DIV
SKIP |[X]| (? :Y -> Pf [+] DIV) =T ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] DIV
(P [+] SKIP) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] SKIP) =T DIV |[X]| P
(P [+] DIV) |[X]| DIV =T P |[X]| DIV
DIV |[X]| (P [+] DIV) =T DIV |[X]| P
SKIP -- X =T SKIP
DIV -- X =T DIV
(? :Y -> Pf [+] DIV) -- X =T ? x:(Y - X) -> Pf x -- X [+] DIV |~| ! x:(Y ∩ X) .. Pf x -- X
(? :Y -> Pf [+] SKIP) -- X =T ? x:(Y - X) -> Pf x -- X [+] SKIP |~| ! x:(Y ∩ X) .. Pf x -- X
SKIP [[r]] =T SKIP
DIV [[r]] =T DIV
SKIP ;; P =T P
P ;; SKIP =T P
DIV ;; P =T DIV
(? :X -> Pf [> SKIP) ;; Q =T ? x:X -> (Pf x ;; Q) [> Q
(? :X -> Pf [> DIV) ;; Q =T ? x:X -> (Pf x ;; Q) [> DIV
SKIP |. Suc n =T SKIP
DIV |. n =T DIV
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] SKIP) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) ELSE (? :Y -> Pf [+] SKIP) |[X]| Qf x [> (SKIP |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] SKIP) |[X]| SKIP)
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] DIV) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] DIV) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) ELSE (? :Y -> Pf [+] DIV) |[X]| Qf x [> (DIV |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] DIV) |[X]| DIV)
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] DIV) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) ELSE (? :Y -> Pf [+] SKIP) |[X]| Qf x [> (SKIP |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] SKIP) |[X]| DIV)
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] SKIP) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] DIV) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) ELSE (? :Y -> Pf [+] DIV) |[X]| Qf x [> (DIV |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] DIV) |[X]| SKIP)
(? :Y -> Pf [+] SKIP) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [+] SKIP) |[X]| Qf x [> SKIP |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [+] SKIP) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] SKIP) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| SKIP
(? :Y -> Pf [+] DIV) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] DIV) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [+] DIV) |[X]| Qf x [> DIV |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [+] DIV) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] DIV) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| DIV
(? :X -> Pf [+] SKIP) ;; Q =T ? x:X -> (Pf x ;; Q) [> Q
(? :X -> Pf [+] DIV) ;; Q =T ? x:X -> (Pf x ;; Q) [+] DIV
lemmas cspT_SKIP_or_DIV_resolve:
[| P = SKIP ∨ P = DIV; Q = SKIP ∨ Q = DIV |] ==> (? :Y -> Pf [+] P) |[X]| (? :Z -> Qf [+] Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] Q) |~| (? :Y -> Pf [+] P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] Q) ELSE (? :Y -> Pf [+] P) |[X]| Qf x [> (P |[X]| (? :Z -> Qf [+] Q) |~| (? :Y -> Pf [+] P) |[X]| Q)
P = SKIP ∨ P = DIV ==> (? :Y -> Pf [+] P) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [+] P) |[X]| Qf x [> P |[X]| ? :Z -> Qf
Q = SKIP ∨ Q = DIV ==> ? :Y -> Pf |[X]| (? :Z -> Qf [+] Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] Q) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] Q) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| Q
lemmas cspT_SKIP_or_DIV_resolve:
[| P = SKIP ∨ P = DIV; Q = SKIP ∨ Q = DIV |] ==> (? :Y -> Pf [+] P) |[X]| (? :Z -> Qf [+] Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] Q) |~| (? :Y -> Pf [+] P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] Q) ELSE (? :Y -> Pf [+] P) |[X]| Qf x [> (P |[X]| (? :Z -> Qf [+] Q) |~| (? :Y -> Pf [+] P) |[X]| Q)
P = SKIP ∨ P = DIV ==> (? :Y -> Pf [+] P) |[X]| ? :Z -> Qf =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] P) |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| ? :Z -> Qf ELSE (? :Y -> Pf [+] P) |[X]| Qf x [> P |[X]| ? :Z -> Qf
Q = SKIP ∨ Q = DIV ==> ? :Y -> Pf |[X]| (? :Z -> Qf [+] Q) =T ? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X)) -> IF (x ∈ X) THEN Pf x |[X]| Qf x ELSE IF (x ∈ Y ∧ x ∈ Z) THEN Pf x |[X]| (? :Z -> Qf [+] Q) |~| ? :Y -> Pf |[X]| Qf x ELSE IF (x ∈ Y) THEN Pf x |[X]| (? :Z -> Qf [+] Q) ELSE ? :Y -> Pf |[X]| Qf x [> ? :Y -> Pf |[X]| Q
lemma cspT_Ext_pre_choice_SKIP_commut:
SKIP [+] ? :X -> Pf =T ? :X -> Pf [+] SKIP
lemma cspT_Ext_pre_choice_DIV_commut:
DIV [+] ? :X -> Pf =T ? :X -> Pf [+] DIV
lemma cspT_Ext_pre_choice_SKIP_assoc:
? :X -> Pf [+] SKIP [+] ? :Y -> Qf =T ? :X -> Pf [+] ? :Y -> Qf [+] SKIP
lemma cspT_Ext_pre_choice_DIV_assoc:
? :X -> Pf [+] DIV [+] ? :Y -> Qf =T ? :X -> Pf [+] ? :Y -> Qf [+] DIV
lemma cspT_Ext_choice_idem_assoc:
P [+] Q [+] Q =T P [+] Q
lemma cspT_Ext_choice_SKIP_DIV_assoc:
P [+] SKIP [+] DIV =T P [+] SKIP
lemma cspT_Ext_choice_DIV_SKIP_assoc:
P [+] DIV [+] SKIP =T P [+] SKIP
lemmas cspT_SKIP_DIV_sort:
P [+] (Q [+] R) =T P [+] Q [+] R
SKIP [+] ? :X -> Pf =T ? :X -> Pf [+] SKIP
DIV [+] ? :X -> Pf =T ? :X -> Pf [+] DIV
? :X -> Pf [+] SKIP [+] ? :Y -> Qf =T ? :X -> Pf [+] ? :Y -> Qf [+] SKIP
? :X -> Pf [+] DIV [+] ? :Y -> Qf =T ? :X -> Pf [+] ? :Y -> Qf [+] DIV
P [+] Q [+] Q =T P [+] Q
P [+] SKIP [+] DIV =T P [+] SKIP
P [+] DIV [+] SKIP =T P [+] SKIP
lemmas cspT_SKIP_DIV_sort:
P [+] (Q [+] R) =T P [+] Q [+] R
SKIP [+] ? :X -> Pf =T ? :X -> Pf [+] SKIP
DIV [+] ? :X -> Pf =T ? :X -> Pf [+] DIV
? :X -> Pf [+] SKIP [+] ? :Y -> Qf =T ? :X -> Pf [+] ? :Y -> Qf [+] SKIP
? :X -> Pf [+] DIV [+] ? :Y -> Qf =T ? :X -> Pf [+] ? :Y -> Qf [+] DIV
P [+] Q [+] Q =T P [+] Q
P [+] SKIP [+] DIV =T P [+] SKIP
P [+] DIV [+] SKIP =T P [+] SKIP
lemma cspT_rw_flag_left_eq:
[| R1.0 =T R2.0; Not_Decompo_Flag ∧ R2.0 =T R3.0 |] ==> R1.0 =T R3.0
lemma cspT_rw_flag_left_ref:
[| R1.0 =T R2.0; Not_Decompo_Flag ∧ R2.0 <=T R3.0 |] ==> R1.0 <=T R3.0
lemmas cspT_rw_flag_left:
[| R1.0 =T R2.0; Not_Decompo_Flag ∧ R2.0 =T R3.0 |] ==> R1.0 =T R3.0
[| R1.0 =T R2.0; Not_Decompo_Flag ∧ R2.0 <=T R3.0 |] ==> R1.0 <=T R3.0
lemmas cspT_rw_flag_left:
[| R1.0 =T R2.0; Not_Decompo_Flag ∧ R2.0 =T R3.0 |] ==> R1.0 =T R3.0
[| R1.0 =T R2.0; Not_Decompo_Flag ∧ R2.0 <=T R3.0 |] ==> R1.0 <=T R3.0
lemma cspT_rw_flag_right_eq:
[| R3.0 =T R2.0; Not_Decompo_Flag ∧ R1.0 =T R2.0 |] ==> R1.0 =T R3.0
lemma cspT_rw_flag_right_ref:
[| R3.0 =T R2.0; Not_Decompo_Flag ∧ R1.0 <=T R2.0 |] ==> R1.0 <=T R3.0
lemmas cspT_rw_flag_right:
[| R3.0 =T R2.0; Not_Decompo_Flag ∧ R1.0 =T R2.0 |] ==> R1.0 =T R3.0
[| R3.0 =T R2.0; Not_Decompo_Flag ∧ R1.0 <=T R2.0 |] ==> R1.0 <=T R3.0
lemmas cspT_rw_flag_right:
[| R3.0 =T R2.0; Not_Decompo_Flag ∧ R1.0 =T R2.0 |] ==> R1.0 =T R3.0
[| R3.0 =T R2.0; Not_Decompo_Flag ∧ R1.0 <=T R2.0 |] ==> R1.0 <=T R3.0
lemma cspT_Seq_compo_mono_flag:
[| P1.0 <=T Q1.0; Not_Decompo_Flag ∧ P2.0 <=T Q2.0 |] ==> P1.0 ;; P2.0 <=T Q1.0 ;; Q2.0
lemma cspT_Seq_compo_cong_flag:
[| P1.0 =T Q1.0; Not_Decompo_Flag ∧ P2.0 =T Q2.0 |] ==> P1.0 ;; P2.0 =T Q1.0 ;; Q2.0
lemmas cspT_free_mono_flag:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 [+] P2.0 <=T Q1.0 [+] Q2.0
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |~| P2.0 <=T Q1.0 |~| Q2.0
[| X = Y; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |[X]| P2.0 <=T Q1.0 |[Y]| Q2.0
[| X = Y; P <=T Q |] ==> P -- X <=T Q -- Y
[| r1.0 = r2.0; P <=T Q |] ==> P [[r1.0]] <=T Q [[r2.0]]
[| P1.0 <=T Q1.0; Not_Decompo_Flag ∧ P2.0 <=T Q2.0 |] ==> P1.0 ;; P2.0 <=T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=T Q |] ==> P |. n1.0 <=T Q |. n2.0
lemmas cspT_free_mono_flag:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 [+] P2.0 <=T Q1.0 [+] Q2.0
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |~| P2.0 <=T Q1.0 |~| Q2.0
[| X = Y; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |[X]| P2.0 <=T Q1.0 |[Y]| Q2.0
[| X = Y; P <=T Q |] ==> P -- X <=T Q -- Y
[| r1.0 = r2.0; P <=T Q |] ==> P [[r1.0]] <=T Q [[r2.0]]
[| P1.0 <=T Q1.0; Not_Decompo_Flag ∧ P2.0 <=T Q2.0 |] ==> P1.0 ;; P2.0 <=T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=T Q |] ==> P |. n1.0 <=T Q |. n2.0
lemmas cspT_free_cong_flag:
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 [+] P2.0 =T Q1.0 [+] Q2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |~| P2.0 =T Q1.0 |~| Q2.0
[| X = Y; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |[X]| P2.0 =T Q1.0 |[Y]| Q2.0
[| X = Y; P =T Q |] ==> P -- X =T Q -- Y
[| r1.0 = r2.0; P =T Q |] ==> P [[r1.0]] =T Q [[r2.0]]
[| P1.0 =T Q1.0; Not_Decompo_Flag ∧ P2.0 =T Q2.0 |] ==> P1.0 ;; P2.0 =T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =T Q |] ==> P |. n1.0 =T Q |. n2.0
lemmas cspT_free_cong_flag:
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 [+] P2.0 =T Q1.0 [+] Q2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |~| P2.0 =T Q1.0 |~| Q2.0
[| X = Y; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |[X]| P2.0 =T Q1.0 |[Y]| Q2.0
[| X = Y; P =T Q |] ==> P -- X =T Q -- Y
[| r1.0 = r2.0; P =T Q |] ==> P [[r1.0]] =T Q [[r2.0]]
[| P1.0 =T Q1.0; Not_Decompo_Flag ∧ P2.0 =T Q2.0 |] ==> P1.0 ;; P2.0 =T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =T Q |] ==> P |. n1.0 =T Q |. n2.0
lemmas cspT_free_decompo_flag:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 [+] P2.0 <=T Q1.0 [+] Q2.0
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |~| P2.0 <=T Q1.0 |~| Q2.0
[| X = Y; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |[X]| P2.0 <=T Q1.0 |[Y]| Q2.0
[| X = Y; P <=T Q |] ==> P -- X <=T Q -- Y
[| r1.0 = r2.0; P <=T Q |] ==> P [[r1.0]] <=T Q [[r2.0]]
[| P1.0 <=T Q1.0; Not_Decompo_Flag ∧ P2.0 <=T Q2.0 |] ==> P1.0 ;; P2.0 <=T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=T Q |] ==> P |. n1.0 <=T Q |. n2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 [+] P2.0 =T Q1.0 [+] Q2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |~| P2.0 =T Q1.0 |~| Q2.0
[| X = Y; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |[X]| P2.0 =T Q1.0 |[Y]| Q2.0
[| X = Y; P =T Q |] ==> P -- X =T Q -- Y
[| r1.0 = r2.0; P =T Q |] ==> P [[r1.0]] =T Q [[r2.0]]
[| P1.0 =T Q1.0; Not_Decompo_Flag ∧ P2.0 =T Q2.0 |] ==> P1.0 ;; P2.0 =T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =T Q |] ==> P |. n1.0 =T Q |. n2.0
lemmas cspT_free_decompo_flag:
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 [+] P2.0 <=T Q1.0 [+] Q2.0
[| P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |~| P2.0 <=T Q1.0 |~| Q2.0
[| X = Y; P1.0 <=T Q1.0; P2.0 <=T Q2.0 |] ==> P1.0 |[X]| P2.0 <=T Q1.0 |[Y]| Q2.0
[| X = Y; P <=T Q |] ==> P -- X <=T Q -- Y
[| r1.0 = r2.0; P <=T Q |] ==> P [[r1.0]] <=T Q [[r2.0]]
[| P1.0 <=T Q1.0; Not_Decompo_Flag ∧ P2.0 <=T Q2.0 |] ==> P1.0 ;; P2.0 <=T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=T Q |] ==> P |. n1.0 <=T Q |. n2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 [+] P2.0 =T Q1.0 [+] Q2.0
[| P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |~| P2.0 =T Q1.0 |~| Q2.0
[| X = Y; P1.0 =T Q1.0; P2.0 =T Q2.0 |] ==> P1.0 |[X]| P2.0 =T Q1.0 |[Y]| Q2.0
[| X = Y; P =T Q |] ==> P -- X =T Q -- Y
[| r1.0 = r2.0; P =T Q |] ==> P [[r1.0]] =T Q [[r2.0]]
[| P1.0 =T Q1.0; Not_Decompo_Flag ∧ P2.0 =T Q2.0 |] ==> P1.0 ;; P2.0 =T Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =T Q |] ==> P |. n1.0 =T Q |. n2.0