
User Documentation for StatWhy v.1.3.0

Yusuke Kawamoto1, Kentaro Kobayashi1,2, and Kohei Suenaga3 ⋆

1 National Institute of Advanced Industrial Science and Technology (AIST), Tokyo,
Japan

2 University of Tsukuba, Ibaraki, Japan
3 Kyoto University, Kyoto, Japan

Abstract. StatWhy is a software tool for automatically verifying the
correctness of statistical hypothesis testing programs. Specifically, pro-
grammers are required to annotate the source code of the statistical
programs with the requirements for the statistical analyses. Then our
StatWhy tool automatically checks whether the programmers have prop-
erly specified the requirements for the statistical methods, thereby identi-
fying any missing or incorrect requirements that need to be corrected. In
this documentation, we first present how to install and use the StatWhy
tool. We then demonstrate how the tool can avoid common errors in the
application of a variety of hypothesis testing methods.

1 Foreword

Statistical methods have been widely misused and misinterpreted in various sci-
entific fields, raising significant concerns about the integrity of scientific research.
To mitigate this problem, we have proposed a new method for formally speci-
fying and automatically verifying the correctness of statistical programs in our
paper [3].

StatWhy is a software tool that implements our proposed method for au-
tomatically checking whether a programmer has properly specified the require-
ments for the statistical methods in a source code.

In Section 2, we first present how to install the StatWhy tool. In Section 3, we
present how to execute StatWhy. In Section 4, we show an illustrating example
to see how a tool user can verify a statistical program. In Section 5, we briefly
explain notations used in StatWhy specifications. In Section 6, we present exam-
ples to demonstrate how we can prevent common errors in applying a variety of
hypothesis testing methods in programs In Section 7, we show the list of all the
hypothesis testing methods supported in StatWhy and provide an experimental
evaluation [3] of the performance of the program verification using StatWhy.

1.1 Availability

The source code of the StatWhy tool is publicly available at https://github.com/
fm4stats/statwhy including a range of example programs.
⋆ The authors are listed in alphabetical order.

https://github.com/fm4stats/statwhy
https://github.com/fm4stats/statwhy

1.2 Contact

Report any bugs and requests to https://github.com/fm4stats/statwhy/issues.

1.3 Updates from 1.2.0

– We renamed the type population to distribution to use terminology cor-
rectly.

– We added a scale parameter to the type dataset. This allows StatWhy to
check that a measurement scale is correctly specified when a hypothesis test
is used.

– We implemented more hypothesis testing methods. See Section ?? for the
list of supported methods.

– We refined our custom proof strategy “StatWhy”. The original proof strategy
is available as “StatWhy aggressive”.

1.4 Acknowledgments.

The authors are supported by JSPS KAKENHI Grant Number JP24K02924,
Japan. Yusuke Kawamoto is supported by JST, PRESTO Grant Number JP-
MJPR2022, Japan. Kohei Suenaga is supported by JST CREST Grant Number
JPMJCR2012, Japan.

2 Installation

In this section, we explain how to install StatWhy and our extension of Cameleer [6].

2.1 Installing StatWhy

Installing OCaml First, we need to install OCaml via the official package
manager opam.

1. Install opam
On Ubuntu:

$ sudo apt-get update
$ sudo apt-get install opam

On macOS, install opam with Homebrew:

$ brew install opam

Alternatively, if you use MacPorts:

$ port install opam

After the installation of opam, you need to initialize it:

2

https://github.com/fm4stats/statwhy/issues

$ opam init -y
$ eval $(opam env)

2. Install OCaml 5.0
To install OCaml 5.0, execute the following command:4

$ opam switch create 5.0.0
$ eval $(opam env)

Installing StatWhy Download the source code of StatWhy, including an ex-
tension of Cameleer. Install StatWhy by running:

$ unzip statwhy-1.3.0.zip
$ cd statwhy-1.3.0/cameleer
$ opam pin add .

This will install StatWhy (included in “cameleer/src/statwhy”) and their de-
pendencies, including Cameleer. In the installation of Cameleer, the Why3 plat-
form [2] is automatically installed.5

Installing cvc5 On Ubuntu 24.04 LTS, you can install cvc5 by:

$ sudo apt install cvc5

Alternatively, you can directly download a binary from the GitHub repository:

$ wget https://github.com/cvc5/cvc5/releases/download/cvc5-1.2.0/cvc5-Linux-
x86_64-static.zip

$ unzip cvc5-Linux-x86_64-static.zip
$ sudo cp ./cvc5-Linux-x86_64-static/bin/cvc5 /usr/local/bin

On macOS, a Homebrew Tap for cvc5 is also available:

$ brew tap cvc5/homebrew-cvc5
$ brew install cvc5

After installing the solver, run the following command to let Why3 detect it:

$ why3 config detect

Remarks on executing hypothesis testing programs in OCaml To exe-
cute .ml files in examples/executable_examples, you need to install the following
additional packages:

1. pyml (OCaml package)
4 Using the versions later than OCaml 5.0, we encountered a dynamic link issue with

Cameleer on macOS.
5 We have tested StatWhy using Why3 1.8.0 and Cameleer 0.1.

3

2. scipy (Python library)

To install these packages, execute the following commands:

$ opam install pyml
$ pip install scipy

Remarks on reinstalling StatWhy If you update from an older version of
StatWhy or have updated CVC5 since your last StatWhy installation, we rec-
ommend deleting the old /.statwhy.conf file. Upon the next launch of StatWhy,
a new config file will be generated.

3 Usage

You can verify an OCaml code via Cameleer by running the following:

$ statwhy <file-to-be-verified>.ml

If you want to verify a WhyML code:

$ statwhy <file-to-be-verified>.mlw

Note that in both cases, our extension of Cameleer is required to load StatWhy.

statwhy <file>.(ml|mlw)
Verify (OCaml|WhyML) program

-L add <dir> to the search path
--genconf generate config file
--debug print debug information
--batch activate batch mode
--extract activate extraction mode
--prover set prover for batch mode
--version print version information

4 Getting Started

We show an example of an OCaml program annotated with preconditions and
postconditions that we want to verify using StatWhy. In the code below, the
function example1 conducts a two-sided t-test for a mean of a population, given
a dataset d as input.

examples/example1.ml

open CameleerBHL

module Example1 = struct
open Ttest

4

(* Declarations of a distribution and formulas *)
let t_n = NormalD (Param "mu1", Param "var")
let fmlA_l = mean t_n $< const_term 1.0
let fmlA_u = mean t_n $> const_term 1.0
let fmlA = mean t_n $!= const_term 1.0

(* executes the t-test for a population mean *)
let example1 (d : float dataset) : float = exec_ttest_1samp t_n 1.0 d Two
(*@ p = example1 d

requires
is_empty (!st) /\
sampled d t_n /\
d.scale = Interval /\
(World (!st) interp) |= Possible fmlA_l /\
(World (!st) interp) |= Possible fmlA_u

ensures
Eq p = compose_pvs fmlA !st &&
(World !st interp) |= StatB (Eq p) fmlA

*)

...
end

The specification of example1 is written in the Gospel specification lan-
guage [1]. The comment section starting with (*@ denotes the specification of
example1.6 More information on the syntax of Gospel can be found on the fol-
lowing webpage: https://ocaml-gospel.github.io/gospel/language/syntax.

Next, we explain the details of the function example1 as follows.

let example1 (d : float dataset) : float = exec_ttest_1samp t_n 1.0 d Two
(*@ p = example1 d

requires
is_empty (!st) /\
sampled d t_n /\
d.scale = Interval /\
(World (!st) interp) |= Possible fmlA_l /\
(World (!st) interp) |= Possible fmlA_u

ensures
Eq p = compose_pvs fmlA !st &&
(World !st interp) |= StatB (Eq p) fmlA

*)

In this program, given a dataset d as input, the command exec_ttest_1samp
t_n 1.0 d Two computes the p-value of the one-sample t-test with the alter-
native hypothesis fmlA that the mean of the population distribution t_n (from
which the dataset d was sampled) is not 1.0.

At the beginning of the specification, p = example1 d assigns the result of
example1 d to the name p, which can be used throughout the specification.

The requires clause describes the precondition for correctly applying the
t-test.
6 Programmers are required to use the WhyML language to describe specifications.

5

https://ocaml-gospel.github.io/gospel/language/syntax

– is_empty (!st) specifies that the record st of hypothesis tests is empty.
This requirement reminds the programmer to check that no hypothesis test
has been conducted before this test.

– sampled d t_n means that the dataset d has been sampled from a normal
distribution t_n. The values of t_n’s parameters (mean mu1 and variance
var) are not specified in the specification. This condition prevents the pro-
grammer from forgetting to check whether the population follows a normal
distribution.

– d.scale = Interval7 specifies that the interval scale is used in this t-test
on the dataset d. This condition ensures that a dataset with the correct scale
of measure is applied to the hypothesis test.

– (World (!st) interp) |= Possible fmlA_l and (World (!st) interp)
|= Possible fmlA_u represent that the analyst has a prior belief that the
lower-tail hypothesis fmlA_l def

= (mean(x) < 1.0) may be true, and that the
upper-tail hypothesis fmlA_u def

= (mean(x) > 1.0) may be true8. Thanks to
this annotation, programmers are reminded to check whether the alternative
hypothesis should be two-tailed or one-tailed, and thus whether the t-test
command should be two-tailed or one-tailed.

The ensures clause describes the postcondition, i.e., what the analyst wants
to learn from the t-test in the world where the test has been performed.

– (Eq p) = compose_pvs fmlA !st represents that p is equal to the p-value
obtained by this hypothesis test with the alternative hypothesis fmlA.

– (World !st interp) |= StatB p fmlA represents that the analyst ob-
tains a statistical belief on the alternative hypothesis fmlA with the p-value p,
in the world equipped with the record st of all hypothesis tests executed so
far. This logical formula (StatB p fmlA) employs a statistical belief modal-
ity StatB introduced in belief Hoare logic (BHL) [4,5].

– The logical connective && represents an asymmetric conjunction to control
the goal-splitting transformation; the proof task for A && B is split into those
for A and A→ B.

For the instructions on verifying this code, see Section 6.1.

Remarks on Modules and Expressions

We present remarks on OCaml programs to be verified using StatWhy.

– We need to open CameleerBHL and Ttest (or any hypothesis testing mod-
ules) explicitly.

7 d.scale can denote either Nominal, Ordinal, Interval, Rational, or Unspecified.
To perform a hypothesis test, we need to specify a scale appropriate to the hypothesis
testing method and the situation. We set d.scale as Unspecified if the dataset d
represents a histogram or a contingency table.

8 We remark that the disjunction fmlA_l ∨ fmlA_u is logically equivalent to fmlA.

6

– We add an attribute [@run] to ignore let expressions that are used exclu-
sively for the execution and should not be verified by StatWhy. This attribute
is useful when we want to avoid verifying a particular function.

– We cannot use the “and” pattern _ and the “unit” pattern () simultaneously
in top-level definitions. The current version of Cameleer does not support
these patterns in top-level definitions. For instance, we cannot use the ex-
pression of the form “let[@run] _ = . . .” in a program.

5 Notations in StatWhy Specifications

In this section, we briefly describe notations used in StatWhy specifications. As
shown in the previous section, we use formulas, such as (World (!st) interp)
|= Possible fmlA_l, to specify the requirements of a hypothesis testing pro-
gram in the framework of Belief Hoare logic (BHL) [4,5]. These formulas repre-
sent certain properties of populations or datasets that express the preconditions
and postconditions for correctly applying hypothesis tests in programs.

5.1 Overview of belief Hoare Logic (BHL)

Belief Hoare logic (BHL) [4,5] is a program logic equipped with epistemic modal
operators for the statistical beliefs acquired via hypothesis testing. We briefly
explain this logic using a simple example described in our paper [3] as follows.

In the framework of BHL, we express a procedure for statistical hypothesis
testing as a program C using a programming language. Then, we use modal logic
to describe the requirements for the tests as a precondition formula, e.g.,

ψpre
def
= y ⇝N (µ, σ2) ∧Pφ ∧ κ∅,

where y ⇝N (µ, σ2) represents that a dataset y is sampled from the population
that follows a normal distribution N (µ, σ2) with an unknown mean µ and an
unknown variance σ2. The modal formula Pφ represents that, before conducting
the hypothesis test, we have the prior belief that the alternative hypothesis φ
may be true. The formula κ∅ represents that no statistical hypothesis testing has
been conducted previously.

The statistical belief we acquire from the hypothesis test is specified as a
postcondition formula, e.g.,

ψpost def
= K≤0.05

y,A φ. (1)

Intuitively, by a hypothesis test A on the dataset y, we believe φ with a p-value
α ≤ 0.05. Since the result of the hypothesis test may be wrong, we use the belief
modality K≤0.05

y,A instead of the S5 knowledge modality K. Using this logic, the
interpretation of the result of statistical methods is regarded to be epistemic.

Finally, we combine all the above and describe the whole statistical inference
as a judgment :

Γ ⊢ {ψpre} C {ψpost}, (2)

7

representing that whenever the precondition ψpre is satisfied, the execution of
the program C results in the satisfaction of the postcondition ψpost. By deriving
this judgment using derivation rules in BHL, we conclude that the procedure for
the statistical inference is correct whenever the precondition is satisfied.

5.2 BHL Formulas

To describe the requirements and interpretations of statistical analyses in Gospel,
we introduce types for terms, atomic formulas, and logical formulas of an exten-
sion of belief Hoare logic (BHL) as follows: 9

type term = RealT real_term | DistributionT distribution | ...
type atomic_formula = Pred psymb (list term)
type formula = Atom atomic_formula | Not formula

| Conj formula formula | Disj formula formula
| Possible formula | Know formula | StatB pvalue formula
| ...

where a term can express a real number and a distribution; an atomic formula
consists of a predicate symbol and a list of terms; a BHL formula is built us-
ing modal epistemic operators Possible, Know, and StatB. Then, we introduce
predicate symbols (e.g., eq_variance and check_variance), functions symbols
(e.g., mean and ppl), and a Kripke semantics where BHL formulas are inter-
preted under (i) the record st of all hypothesis tests executed so far [4,5] and
(ii) the interpretation interp of private variables.

The interpretation of a BHL formula, fml, in a possible world, World !st
interp, is written as (World !st interp) |= fml. The two symbols st and
interp are reserved words defined in cameleerBHL.mlw.

Predicate and function symbols are defined in the files logicalFormula.mlw
and atomicFormulas.mlw. BHL and the Kripke semantics are implemented in
statBHL.mlw and statELHT.mlw.

5.3 Useful Operators to Describe Hypothesis Testing Programs

We introduce useful operators to facilitate describing the specification of StatWhy
programs. Since hypothesis testing programs often involve comparisons among
multiple groups of data, the preconditions and postconditions can become lengthy
by repeating similar conditions. To simplify such redundant specifications, we
have provided a set of folding operations, allowing programmers to abstract away
repetitive parts.10

For example, to simplify the conditions for comparing each pair of groups, we
can use the operator for_all. This higher-order function checks whether a given
predicate holds for all elements in a list. In StatWhy programs, this operator is
often used to describe assertions that must hold for combinations of distributions
or terms. In the following example, the formula asserts that all the distributions
have the same variance:
9 The actual definition can be found in logicalFormula.mlw.

10 These folding operations are defined in hof.mlw and utility.mlw.

8

for_all
(fun t -> let (x, y) = t in

(World !st interp) |= eq_variance x y)
(cmb dists)

In the above formula, for_all is used to describe the iteration over all possible
pairs (x, y) of distributions in a set dists. Using the predicate eq_variance,
this formula states that for each pair (x, y) of the distributions, x and y have
the same variance.

To improve the performance of StatWhy, we implemented a custom proof
strategy—a combination of proof tactics and transformations—to accelerate the
proof search in the presence of folding operations. Specifically, by applying a
transformation called compute_specified, StatWhy automatically unfolds as-
sertions written with syntax sugar such as for_all before discharging a verifi-
cation condition. For instance, the above example formula is first transformed
into:

((World !st interp) |= eq_variance p_1 p_2)
/\ ((World !st interp) |= eq_variance p_1 p_3)
/\ ... /\ ((World !st interp) |= eq_variance p_(n-1) p_n)

Then, thanks to the removal of the folding operation, StatWhy can efficiently
discharge the verification conditions even when the set dists of distributions is
large.11

Programmers can also choose to use other predefined abbreviations available
in hof.mlw and utility.mlw.

– hof.mlw provides typical higher-order operations on polymorphic lists, such
as fold and map.

– utility.mlw file defines operations that are useful to handle combinations
of terms and distributions, which are frequently used in multiple comparison
programs.

For example, the cmb function in utility.mlw enables users to compute all
possible pairings of elements in a polymorphic list. This function is particularly
useful in StatWhy when multiple distributions or terms need to be combined
to describe specifications. A concrete example of using cmb appeared in the
previous example, where (cmb dists) represents the set of all possible pairs of
the distributions contained in dists.

Moreover, some hypothesis tests, such as the one-way ANOVA and Dunnett’s
test, have useful functions for defining alternative hypotheses, as it might be too
tedious to define manually. Thanks to our custom proof strategy, these functions
are also unfolded before discharging the goals, ensuring the proof automation
remains effective.
11 Conventionally, the number of groups compared in a hypothesis test is usually less

than 8. However, we have found that SMT solvers often get stuck when trying to
discharge the verification conditions that involve such folding operations.

9

6 Examples of Analyses Using StatWhy

We show a variety of examples of how StatWhy can be used to avoid common
errors in hypothesis testing.

– Section 6.1 demonstrates how to use StatWhy in an example of a one-sample
t-test.

– Section 6.2 shows how StatWhy checks whether appropriate variants of t-test
are applied to different situations.

– Section 6.3 explains how StatWhy verifies a program for the Bonferroni cor-
rection in multiple comparisons and addresses p-value hacking problems.

– Section 6.4 shows how StatWhy checks the programs with ANOVA and other
hypothesis tests under different requirements.

– Section 6.5 demonstrates how StatWhy verifies Tukey’s HSD test—a method
for multiple comparison.

6.1 Simple t-test (One-Sample t-test)

We demonstrate how to use StatWhy through an example of verifying a program
that performs the t-test for a mean of a population.

To verify the OCaml program examples/example1.ml, execute the following
command:

$ statwhy examples/example1.ml

This command transforms the OCaml code into WhyML code, generates the
verification conditions (VC), and launches the Why3 IDE as follows.

10

The Why3 IDE screen displays the code to be verified in the right panel
and shows the VCs generated by the code in the left panel. Why3 generates
two VCs from the source code file example1.ml in this case, example1’vc and
example1”vc. The former is a VC for example1, which was explained in Sec-
tion 4. The latter VC is similar to the former, but lacks one of the preconditions:
sampled d t_n.

To discharge each VC, right-click on the VC, click “StatWhy” or press ‘4’
after selecting the VC. Then StatWhy starts discharging the VC.

If a prover succeeds in discharging a goal, a check-mark (✓) will appear to the
left of the VC, indicating that the goal is correct:

If Why3 fails to discharge the goal, by clicking a failed VC, the analyst finds the
judgment that cannot be discharged on the right panel. For example, according
to the goal on the right panel of the following figure, StatWhy has failed to

11

check that the dataset d has been sampled from a normal distribution NormalD
(Param "mu1", Param "var") with an unknown mean mu1 and an unknown
variance var.

Notes on our Custom Proof Strategy “StatWhy” is our custom proof
strategy. It first applies Why3’s default proof transformations (e.g., split_vc
for splitting conjunctive verification conditions into smaller ones and compute
_specified for unfolding certain functions and predicates and simplifying the
proof goals). These invocations of the proof strategies are interleaved with calls
to SMT solvers, whose timeouts are set to small values. If these applications
of the default proof strategies fail to discharge the VCs, then we apply aggres-
sive transformations that unfold the definitions of the functions and predicates
defined in StatWhy.

In contrast, “StatWhy aggressive” is a more eager unfolding strategy. It first
unfolds the definitions of all functions and predicates used in the goals and
simplifies them. Therefore, in most cases, it discharges the VCs faster than the
“StatWhy” strategy. However, in some cases where one of the preconditions does
not hold, it may transform the goals so eagerly that the original structure of goals
is lost, and the programmer cannot see which condition fails to be discharged.
To identify such failed conditions, we recommend using the “StatWhy” strategy.

6.2 Several Variants of t-tests

StatWhy can distinguish between the different preconditions required for different
hypothesis testing commands and remind users to make such conditions explicit.
In this example, we consider several variants of t-tests, such as paired/non-paired
t-tests and t-tests in the presence of populations with equal/unequal variance.

12

Paired t-test vs. Non-Paired t-test We use the paired t-test when there is
a pairing or matching between the two samples. On the other hand, the non-
paired t-test is applied otherwise, e.g., when two datasets are sampled from
the population independently. StatWhy can check which of the tests should be
applied to the current situation by checking the precondition.

Paired t-test The specification of the paired t-test command exec_ttest_
paired in StatWhy is as follows:

val exec_ttest_paired (d1 d2: distribution) (y1 y2 : dataset real) (alt :
alternative) : real

writes { st }
requires {

paired y1 y2 /\ scale_leq Interval y1.scale /\ scale_leq Interval y2.scale /\
(World !st interp) |= is_normal d1 /\ (World !st interp) |= is_normal d2 /\
sampled y1 d1 /\ sampled y2 d2 /\
let r1 = mean d1 in
let r2 = mean d2 in
match alt with
| Two ->

(World !st interp) |= Possible (r1 $< r2) /\
(World !st interp) |= Possible (r1 $> r2)

| Up ->
(World !st interp) |= Not (Possible (r1 $< r2)) /\
(World !st interp) |= Possible (r1 $> r2)

| Low ->
(World !st interp) |= Possible (r1 $< r2) /\
(World !st interp) |= Not (Possible (r1 $> r2))

end
}
ensures {

let pv = result in
pvalue pv /\
let r1 = mean d1 in
let r2 = mean d2 in
let h = match alt with

| Two -> r1 $!= r2
| Up -> r1 $> r2
| Low -> r1 $< r2

end in !st = Cons ("ttest_paired", h, Eq pv) !(old st)
}

exec_ttest_paired takes five arguments. d1 and d2 denote the population
distributions, y1 and y2 denote the datasets to be tested, and alt reopresents
what type of the alternative hypothesis is; Two is for two-tailed tests, Up is for
upper-tailed tests, and Low is for lower-tailed tests.

The precondition for the test is described in the requires clause. paired y1
y2 specifies that two samples y1 and y2 are obtained in pairs. The ensures clause
specifies the postcondition of the test. The expression !st = Cons ("ttest_
paired", h, Eq pv) !(old st) stores the resulting p-value Eq pv and the al-
ternative hypothesis h in the store st.

13

Non-Paired t-test The code below shows the specification of the non-paired
t-test (Student’s t-test):

val exec_ttest_ind_eq (d1 d2: distribution) (y1 y2 : dataset real) (alt :
alternative) : real

writes { st }
requires {

independent y1 y2 /\ scale_leq Interval y1.scale /\ scale_leq Interval y2.
scale /\

(World !st interp) |= is_normal d1 /\ (World !st interp) |= is_normal d2 /\
(World !st interp) |= eq_variance d1 d2 /\
(World !st interp) |= Not (check_variance d1) /\
(World !st interp) |= Not (check_variance d2) /\
sampled y1 d1 /\ sampled y2 d2 /\
let r1 = mean d1 in
let r2 = mean d2 in
match alt with
| Two ->

(World !st interp) |= Possible (r1 $< r2) /\
(World !st interp) |= Possible (r1 $> r2)

| Up ->
(World !st interp) |= Not (Possible (r1 $< r2)) /\
(World !st interp) |= Possible (r1 $> r2)

| Low ->
(World !st interp) |= Possible (r1 $< r2) /\
(World !st interp) |= Not (Possible (r1 $> r2))

end
}
ensures {

let pv = result in
pvalue pv /\
let r1 = mean d1 in
let r2 = mean d2 in
let h = match alt with

| Two -> r1 $!= r2
| Up -> r1 $> r2
| Low -> r1 $< r2

end in !st = Cons ("ttest_ind_eq", h, Eq pv) !(old st)
}

The precondition for exec_ttest_ind_eq includes the following conditions:

– independent y1 y2 specifies that the datasets y1 and y2 must be sampled
independently (not in pair).

– (World !st interp) |= eq_variance d1 d2 specifies that the population
distributions d1 and d2 have the same variance.

– (World !st interp) |= Not (check_variance d1) and (World !st interp)
|= Not (check_variance d2) specify that the variances of d1 and d2 have
not been checked, i.e., unknown to the programmer.

In the file examples/example2.ml, we have an example that conducts the
paired t-test command exec_ttest_paired. To verify this code, execute statwhy
example2.ml, which will open the Why3 IDE as follows.

14

Equal vs. Unequal Variance We explain the equal variance assumption in
the non-paired t-test as follows. In the non-paired t-test, we should use different
t-tests according to this assumption. When we know or assume that two popula-
tions have equal variance, we usually use Student’s t-test. In contrast, we apply
Welch’s t-test if we cannot assume equal variance. StatWhy distinguishes the
difference by the precondition eq_variance.

exec_ttest_ind_eq in the last section is our formalization of Student’s t-
test. (World !st interp) |= eq_variance d1 d2 in the precondition repre-
sents that the two distributions d1 and d2 that respectively draw the datasets
y1 and y2 have equal variance.

In contrast, exec_ttest_ind_neq below assumes Not (eq_variance d1 d2):

val exec_ttest_ind_neq (d1 d2: distribution) (y1 y2 : dataset real) (alt :
alternative) : real

writes { st }
requires {

independent y1 y2 /\ scale_leq Interval y1.scale /\ scale_leq Interval y2.
scale /\

(World !st interp) |= is_normal d1 /\ (World !st interp) |= is_normal d2 /\
(World !st interp) |= Not (check_variance d1) /\
(World !st interp) |= Not (check_variance d2) /\
(World !st interp) |= Not (eq_variance d1 d2) /\
sampled y1 d1 /\ sampled y2 d2 /\
let r1 = mean d1 in
let r2 = mean d2 in
match alt with
| Two ->

(World !st interp) |= Possible (r1 $< r2) /\
(World !st interp) |= Possible (r1 $> r2)

15

| Up ->
(World !st interp) |= Not (Possible (r1 $< r2)) /\
(World !st interp) |= Possible (r1 $> r2)

| Low ->
(World !st interp) |= Possible (r1 $< r2) /\
(World !st interp) |= Not (Possible (r1 $> r2))

end
}
ensures {

let pv = result in
pvalue pv /\
let r1 = mean d1 in
let r2 = mean d2 in
let h = match alt with

| Two -> r1 $!= r2
| Up -> r1 $> r2
| Low -> r1 $< r2

end in !st = Cons ("ttest_ind_neq", h, Eq pv) !(old st)
}

The code examples for these t-tests are available in examples/example3.ml

6.3 Dealing with Combined Tests in StatWhy

Let Aφ0
and Aφ1

be two hypothesis tests with alternative hypotheses φ0 and φ1,
respectively. There are two possible combinations of Aφ0 and Aφ1 . One is the
disjunctive combination Aφ0∨φ1 whose alternative hypothesis is φ0 ∨ φ1, while
the other is the conjunctive combination Aφ0∧φ1

with alternative hypothesis
φ0 ∧ φ1. StatWhy can check whether a program correctly calculates the p-value
of such combined tests.

16

P -Values of Disjunctive Alternative Hypothesis Assume that p-values
of Aφ0

and Aφ1
are p0 and p1, respectively. It is known that the p-value p of

Aφ0∨φ1 satisfies p ≤ p0 + p1, which is called the Bonferroni correction. StatWhy
automatically calculates the p-value of Aφ0∧φ1 as p0 + p1 if Aφ0 and Aφ1 are
performed independently.

The code below defines a procedure example_or_or, which compares the
dataset d1 with d2 and d3, and d2 with d3, then calculates the overall p-value.

examples/example4.ml

module Example4 = struct
open Ttest

let t_n1 = NormalD (Param "mu1", Param "var")
let t_n2 = NormalD (Param "mu2", Param "var")
let t_n3 = NormalD (Param "mu3", Param "var")
let fmlA_l = mean t_n1 $< mean t_n2
let fmlA_u = mean t_n1 $> mean t_n2
let fmlA = mean t_n1 $!= mean t_n2
let fmlB_l = mean t_n1 $< mean t_n3
let fmlB_u = mean t_n1 $> mean t_n3
let fmlB = mean t_n1 $!= mean t_n3
let fmlC_l = mean t_n2 $< mean t_n3
let fmlC_u = mean t_n2 $> mean t_n3
let fmlC = mean t_n2 $!= mean t_n3
let fml_or_or = fmlA $|| fmlB $|| fmlC
let fml_and_or = fmlA $&& fmlB $|| fmlC
let fml_or_and = fmlA $|| fmlB $&& fmlC
let fml_and_and = fmlA $&& fmlB $&& fmlC

(* H1 : (fmlA \/ fmlB) \/ fmlC *)
let example_or_or d1 d2 d3 : float =

let p1 = exec_ttest_ind_eq t_n1 t_n2 d1 d2 Two in
let p2 = exec_ttest_ind_eq t_n1 t_n3 d1 d3 Two in
let p3 = exec_ttest_ind_eq t_n2 t_n3 d2 d3 Two in
p1 +. p2 +. p3

(*@
p = example_or_or d1 d2 d3
requires

is_empty (!st) /\
sampled d1 t_n1 /\ sampled d2 t_n2 /\ sampled d3 t_n3 /\
d1.scale = d2.scale = d3.scale = Interval /\
independent d1 d2 /\ independent d1 d3 /\ independent d2 d3 /\
(World (!st) interp) |= Possible fmlA_l /\
(World (!st) interp) |= Possible fmlA_u /\
(World (!st) interp) |= Possible fmlB_l /\
(World (!st) interp) |= Possible fmlB_u /\
(World (!st) interp) |= Possible fmlC_l /\
(World (!st) interp) |= Possible fmlC_u

ensures
(Leq p) = compose_pvs fml_or_or !st &&
(World !st interp) |= StatB (Leq p) ((((mean t_n1) $!= (mean t_n2)) $||

fmlB) $|| fmlC)
*)

17

...
end

To verify this code, run statwhy examples/example4.ml and apply the
“StatWhy” strategy to example_or_or’vc.

P -Values of Conjunctive Hypotheses To calculate the p-value of a con-
junctive hypothesis (e.g., φ0 ∧ φ1), we take the minimum of the p-values of its
subformulas φ0 and φ1. StatWhy can also verify these conjunctive combinations
of hypothesis tests.

The code below compares d1, d2, and d3, as the code in the last section, but
reports the smallest p-value among the three comparisons.

examples/example4.ml

open CameleerBHL

module Example4 = struct
open Ttest

let t_n1 = NormalD (Param "mu1", Param "var")
let t_n2 = NormalD (Param "mu2", Param "var")
let t_n3 = NormalD (Param "mu3", Param "var")
let fmlA_l = mean t_n1 $< mean t_n2
let fmlA_u = mean t_n1 $> mean t_n2
let fmlA = mean t_n1 $!= mean t_n2
let fmlB_l = mean t_n1 $< mean t_n3
let fmlB_u = mean t_n1 $> mean t_n3
let fmlB = mean t_n1 $!= mean t_n3

18

let fmlC_l = mean t_n2 $< mean t_n3
let fmlC_u = mean t_n2 $> mean t_n3
let fmlC = mean t_n2 $!= mean t_n3
let fml_or_or = fmlA $|| fmlB $|| fmlC
let fml_and_or = fmlA $&& fmlB $|| fmlC
let fml_or_and = fmlA $|| fmlB $&& fmlC
let fml_and_and = fmlA $&& fmlB $&& fmlC

...

(* H1 : (fmlA /\ fmlB) /\ fmlC *)
let example_and_and d1 d2 d3 : float =

let p1 = exec_ttest_ind_eq t_n1 t_n2 d1 d2 Two in
let p2 = exec_ttest_ind_eq t_n1 t_n3 d1 d3 Two in
let p3 = exec_ttest_ind_eq t_n2 t_n3 d2 d3 Two in
min (min p1 p2) p3

(*@
p = example_and_and d1 d2 d3
requires

is_empty (!st) /\
sampled d1 t_n1 /\ sampled d2 t_n2 /\ sampled d3 t_n3 /\
d1.scale = d2.scale = d3.scale = Interval /\
independent d1 d2 /\ independent d1 d3 /\ independent d2 d3 /\
(World (!st) interp) |= Possible fmlA_l /\
(World (!st) interp) |= Possible fmlA_u /\
(World (!st) interp) |= Possible fmlB_l /\
(World (!st) interp) |= Possible fmlB_u /\
(World (!st) interp) |= Possible fmlC_l /\
(World (!st) interp) |= Possible fmlC_u

ensures
(Leq p) = compose_pvs fml_and_and !st &&
(World !st interp) |= StatB (Leq p) fml_and_and

*)
end

To verify the code above, execute the following command:

$ statwhy examples/example4.ml

And apply the “StatWhy” strategy to example_and_and’vc.

19

P -Value Hacking The p-value hacking or data dredging is a method for ma-
nipulating statistical analysis to obtain a lower p-value than the actual one. In
this example, we see that StatWhy prevents the p-value hacking by calculating
correct p-values with the results of conducted hypothesis tests.

The following code, example5 in examples/example5.ml, is an example of
p-value hacking:

examples/example5.ml

open CameleerBHL

module Example5 = struct
open Ttest

let t_n = NormalD (Param "mu1", Param "var")
let fmlA_l = mean t_n $< const_term 1.0
let fmlA_u = mean t_n $> const_term 1.0
let fmlA = mean t_n $!= const_term 1.0

(* Example of p-value hacking *)
(* This program is INCORRECT and so its verification FAILS *)
let example5 d1 d2 =

let p1 = exec_ttest_1samp t_n 1.0 d1 Two in
let p2 = exec_ttest_1samp t_n 1.0 d2 Two in
let p = min p1 p2 in
(p1, p2, p)

(*@
(p1, p2, p) = ex_hack d1 d2
requires

is_empty (!st) /\

20

sampled d1 t_n /\ sampled d2 t_n /\
d1.scale = d2.scale = Interval /\
(World (!st) interp) |= Possible fmlA_l /\
(World (!st) interp) |= Possible fmlA_u

ensures
(Eq p = compose_pvs fmlA !st (* This is incorrect *)

&& (World !st interp) |= StatB (Eq p) fmlA) /\
(Leq (p1 +. p2) = compose_pvs fmlA !st (* This is correct *)

&& (World !st interp) |= StatB (Leq (p1 +. p2)) fmlA)
*)

end

example5 performs the t-test for the mean of t_n twice, using different
datasets d1 and d2. Then it obtains the p-values for each test, p1 and p2, and
reports the lower p-value p (defined by min p1 p2).

The postcondition of this function consists of two main formulas:

Eq p = compose_pvs fmlA !st && (World !st interp) |= StatB (Eq p) fmlA

and

Leq (p1 +. p2) = compose_pvs fmlA !st

&& (World !st interp) |= StatB (Leq (p1 +. p2)) fmlA.

In the former assertion, Eq p = compose_pvs fmlA !st is a wrong interpreta-
tion of the result. In contrast, the latter states that the sum of p1 and p2 is the
p-value of fmlA, which is correct.

StatWhy does validate the latter, but not the former; Eq p = compose_pvs
fmlA !st fails to be validated:

21

6.4 Hypothesis Tests for More Than Two Population Means

This example illustrates hypothesis tests to analyze the difference among more
than two population means.

StatWhy provides the specification of the one-way ANOVA (analysis of vari-
ance) to test for overall differences among the groups. It also supports the non-
parametric Kruskal-Wallis test and the Alexander-Govern test as alternatives
when the assumptions of ANOVA are not satisfied.

These methods test whether all the given population means are identical or
not. To test the difference of each pair of the given means, we should use a
multiple comparison method, such as Tukey’s HSD test (see Section 6.5.)

One-Way ANOVA The specification of the one-way ANOVA in StatWhy is
as follows:

val exec_oneway_ANOVA (ds : list distribution) (ys : list (dataset real)) :
real

writes { st }
requires {

independent_list ys /\
length ds = length ys &&
length ds >= 2 /\ length ys >= 2 &&
for_all2 (fun d y -> ((World !st interp) |= is_normal d) && sampled y d) ds

ys /\
for_all (fun y -> scale_leq Interval y.scale) ys /\
(forall p q : distribution. mem p ds /\ mem q ds ->

(World !st interp) |= eq_variance p q) /\
(forall s t : distribution. mem s ds /\ mem t ds /\ not eq_distribution s t

->
((World !st interp) |= Possible (mean s $< mean t) /\
(World !st interp) |= Possible (mean s $> mean t)))

} ensures {
let pv = result in
pvalue result /\
let h = oneway_ANOVA_hypothesis ds in
!st = !(old st) ++ Cons ("oneway_ANOVA", h, Eq pv) Nil

}

It is worth noting that the input arguments for terms and datasets used in the
one-way ANOVA are lists, which allows for the comparisons of arbitrary finite
groups of data.

The one-way ANOVA assumes the following conditions:

1. Each population of the samples is normally distributed.
2. All the populations have the same variance.

The former assumption is formalized as:

for_all2
(fun p y -> match p with | NormalD _ _ -> sampled y p | _ -> false end)
ds ys

22

The latter is specified by:

(forall p q : distribution. mem p ps /\ mem q ps /\ not eq_distribution s t ->
(World !st interp) |= eq_variance p q)

For the sake of brevity, we introduce an abbreviation that is not included
in the WhyML syntax. In the above specification, the alternative hypothesis
is abbreviated as oneway_hypothesis terms, which represents all the possible
combinations of comparisons. For example, oneway_hypothesis applied to Cons
termA (Cons termB (Cons termC Nil)) represents the formula (termA ̸= termB)∧
(termA ̸= termC) ∧ (termB ̸= termC).

The following code conducts the one-way ANOVA for three population means.

examples/mlw/ex_oneway_ANOVA.mlw

module Oneway_ANOVA_example
use cameleerBHL.CameleerBHL
use oneway_ANOVA.Oneway_ANOVA

let function p1 = NormalD (Param "m1") (Param "v")
let function p2 = NormalD (Param "m2") (Param "v")
let function p3 = NormalD (Param "m3") (Param "v")

let function t_m1 = mean p1
let function t_m2 = mean p2
let function t_m3 = mean p3

let ex_oneway_ANOVA (d1 d2 d3 : dataset real)
(* Executes oneway ANOVA for 3 population means *)

requires { for_all (fun d -> d.scale = Interval) (Cons d1 (Cons d2 (Cons d3
Nil))) /\

independent_list (Cons d1 (Cons d2 (Cons d3 Nil))) /\
is_empty !st /\
for_all2

(fun p y -> sampled y p)
(Cons p1 (Cons p2 (Cons p3 Nil)))
(Cons d1 (Cons d2 (Cons d3 Nil))) /\

((World !st interp) |= Possible (t_m1 $< t_m2)) /\
((World !st interp) |= Possible (t_m1 $> t_m2)) /\
((World !st interp) |= Possible (t_m1 $< t_m3)) /\
((World !st interp) |= Possible (t_m1 $> t_m3)) /\
((World !st interp) |= Possible (t_m2 $< t_m3)) /\
((World !st interp) |= Possible (t_m2 $> t_m3))

}
ensures {

let p = result in
let h = (t_m1 $!= t_m2) $|| (t_m1 $!= t_m3) $|| (t_m2 $!= t_m3) in
Eq p = compose_pvs h !st &&
(World !st interp) |= StatB (Eq p) h

}
= exec_oneway_ANOVA (Cons p1 (Cons p2 (Cons p3 Nil))) (Cons d1 (Cons d2 (Cons

d3 Nil)))
end

23

In the postcondition, h = fmlA $&& fmlB $&& fmlC confirms the concrete
form of the alternative hypothesis h.12

To verify the code above, execute the following command:

$ statwhy examples/mlw/ex_oneway_ANOVA.mlw

Alexander-Govern Test The Alexander-Govern test requires that each sam-
ple comes from a normally distributed population, but relaxes the assumption of
equal variance on ANOVA. We show an example of the Alexander-Govern test
as follows:

examples/mlw/ex_alexandergovern.mlw

module AlexanderGovern_example
use cameleerBHL.CameleerBHL
use alexandergovern.AlexanderGovern

let function p1 : distribution = NormalD (Param "mean1") (Param "var1")
let function p2 : distribution = NormalD (Param "mean2") (Param "var2")
let function p3 : distribution = NormalD (Param "mean3") (Param "var3")
let function p4 : distribution = NormalD (Param "mean4") (Param "var4")

let function t_m1 = mean p1
let function t_m2 = mean p2
let function t_m3 = mean p3
let function t_m4 = mean p4

12 $&& is the syntax sugar for the conjunction of two hypotheses. Similarly, $|| is for
the disjunction of two hypotheses.

24

let ex_alexandergovern (d1 d2 d3 d4 : dataset real)
(* Executes Alexander-Govern test for 3 population means *)

requires { independent_list (Cons d1 (Cons d2 (Cons d3 (Cons d4 Nil)))) /\
for_all (fun d -> d.scale = Interval) (Cons d1 (Cons d2 (Cons d3 (

Cons d4 Nil)))) /\
is_empty !st /\
for_all2

(fun p y -> sampled y p)
(Cons p1 (Cons p2 (Cons p3 (Cons p4 Nil))))
(Cons d1 (Cons d2 (Cons d3 (Cons d4 Nil)))) /\

((World !st interp) |= Possible (t_m1 $< t_m2)) /\
((World !st interp) |= Possible (t_m1 $> t_m2)) /\
((World !st interp) |= Possible (t_m1 $< t_m3)) /\
((World !st interp) |= Possible (t_m1 $> t_m3)) /\
((World !st interp) |= Possible (t_m1 $< t_m4)) /\
((World !st interp) |= Possible (t_m1 $> t_m4)) /\
((World !st interp) |= Possible (t_m2 $< t_m3)) /\
((World !st interp) |= Possible (t_m2 $> t_m3)) /\
((World !st interp) |= Possible (t_m2 $< t_m4)) /\
((World !st interp) |= Possible (t_m2 $> t_m4)) /\
((World !st interp) |= Possible (t_m3 $< t_m4)) /\
((World !st interp) |= Possible (t_m3 $> t_m4))

}
ensures {

let p = result in
let h = (t_m1 $!= t_m2) $|| (t_m1 $!= t_m3) $|| (t_m1 $!= t_m4)

$|| (t_m2 $!= t_m3) $|| (t_m2 $!= t_m4) $|| (t_m3 $!= t_m4) in
Eq p = compose_pvs h !st &&
(World !st interp) |= StatB (Eq p) h

}
= exec_alexandergovern (Cons p1 (Cons p2 (Cons p3 (Cons p4 Nil)))) (Cons d1 (

Cons d2 (Cons d3 (Cons d4 Nil))))
end

Note that the assumption of equal variance is no longer necessary in the precon-
dition.

To verify the code above, execute the following command:

$ statwhy examples/mlw/ex_alexandergovern.mlw

25

Kruskal-Wallis Test The Kruskal-Wallis H-test is a non-parametric variant
of ANOVA; it does not assume that each sample is from normally distributed
populations with equal variance. Here is an example of the Kruskal-Wallis H-test
whose null hypothesis is that all medians of three populations are equal:

examples/mlw/ex_kruskal.mlw

module Kruskal_example
use cameleerBHL.CameleerBHL
use kruskal.Kruskal

let function p1 = UnknownD "p1"
let function p2 = UnknownD "p2"
let function p3 = UnknownD "p3"

let function t_m1 = med p1
let function t_m2 = med p2
let function t_m3 = med p3

let ex_kruskal (d1 d2 d3 : dataset real)
(* Executes Kruskal test for 3 population medians *)

requires { for_all (fun d -> d.scale = Interval) (Cons d1 (Cons d2 (Cons d3
Nil))) /\

independent_list (Cons d1 (Cons d2 (Cons d3 Nil))) /\
is_empty !st /\
for_all2

(fun p y -> sampled y p)
(Cons p1 (Cons p2 (Cons p3 Nil)))
(Cons d1 (Cons d2 (Cons d3 Nil))) /\

((World !st interp) |= Possible (t_m1 $< t_m2)) /\
((World !st interp) |= Possible (t_m1 $> t_m2)) /\

26

((World !st interp) |= Possible (t_m1 $< t_m3)) /\
((World !st interp) |= Possible (t_m1 $> t_m3)) /\
((World !st interp) |= Possible (t_m2 $< t_m3)) /\
((World !st interp) |= Possible (t_m2 $> t_m3))

}
ensures {

let p = result in
let h = (t_m1 $!= t_m2) $|| (t_m1 $!= t_m3) $|| (t_m2 $!= t_m3) in
Eq p = compose_pvs h !st &&
(World !st interp) |= StatB (Eq p) h

}
= exec_kruskal (Cons p1 (Cons p2 (Cons p3 Nil))) (Cons d1 (Cons d2 (Cons d3

Nil)))
end

You can verify the code above by running:

$ statwhy examples/mlw/ex_kruskal.mlw

6.5 Tukey’s HSD Test

In this section, we show the verification of a program for a popular multiple
comparison test called the Tukey’s HSD test.

Given datasets from multiple groups, Tukey’s HSD test examines the differ-
ences in means for each pair of groups. In StatWhy, the specification of the test
is as follows:

val exec_tukey_hsd (dists : list distribution) (ys : list (dataset real)) :
array real

27

writes { st }
requires {

independent_list ys /\
Length.length dists = Length.length ys /\
for_all (fun p -> (World !st interp) |= is_normal p) dists /\
for_all2 (fun p y -> sampled y p) dists ys /\
for_all (fun y -> scale_leq Interval y.scale) ys /\
for_all

(fun t -> let (x, y) = t in
(World !st interp) |= eq_variance x y)

(cmb dists) /\
for_all

(fun t -> let (s, t) = t in
((World !st interp) |= Possible (mean s $< mean t) /\
(World !st interp) |= Possible (mean s $> mean t)))

(cmb_term dists)
}
ensures {

let ps = result in
length ps = div2 ((Length.length dists) * (Length.length dists - 1)) /\
let b = length ps in
(forall i : int. 0 <= i < b -> pvalue (ps[i])) /\
let cmbs = combinations (map (fun p -> RealT (mean p)) dists) "!=" in
!st = (cmb_store cmbs ps 0) ++ !(old st)

}
end

dists denotes a list of population distributions, and ys is a list of the datasets
sampled from the distributions. exec_tukey_hsd returns an array of p-values.
These p-values are sorted in lexicographic order, such as p12, p13, p14, p23, p24, p34,
where pij is the p-value for the comparison of groups i and j.

exec_tukey_hsd requires that all populations have the same variance, which
is specified by

for_all
(fun t -> let (x, y) = t in

(World !st interp) |= eq_variance x y)
(combinations_poly ppls)

example6_tukey_hsd in examples/example6.ml performs Tukey’s HSD test
for three groups. To verify the code, execute the following command:

$ statwhy examples/example6.ml

28

7 StatWhy’s Scope and Scalability

7.1 List of Hypothesis Testing Methods Supported in StatWhy

We show the list of all the hypothesis testing methods supported in StatWhy
in Table 1. Most of the supported tests are implemented based on the specifi-
cation of hypothesis testing functions in scipy.stats. In future work, we will
support the hypothesis testing methods that have not supported in this version
of StatWhy (e.g., those for correlation).

7.2 Scalability of StatWhy

We conducted experiments to evaluate the performance of the program verifi-
cation using StatWhy. We performed the experiments on a MacBook Pro with
Apple M2 Max CPU and 96 GB memory using the external SMT solver cvc5
1.0.6. We presented part of the following experimental results in our paper [3].

Table 2 summarizes the execution times for StatWhy to verify programs for
popular single-comparison hypothesis testing methods. The verification of these
testing methods is very efficient even when precondition formulas are relatively
large (e.g., in Alexander-Govern test and in χ2 test).

Table 3 shows the execution times for StatWhy to verify hypothesis testing
programs for practical numbers of disjunctive/conjunctive hypotheses. These
experiments took roughly the same amount of time for a larger number of hy-
potheses.

Table 4 presents the execution times (sec) for the most common multiple
comparison methods described in standard textbooks. The numbers of groups

29

compared in the experiments are practical but challenging, as the number of
comparisons grows rapidly with the number of groups. The verification of these
programs is efficient, since our proof strategy explained in [3] accelerates the
proof search for programs with folding operations and test histories.

References

1. Charguéraud, A., Filliâtre, J., Lourenço, C., Pereira, M.: GOSPEL - providing ocaml
with a formal specification language. In: Proc. of the 24th International Symposium
on Formal Methods (FM 2019). Lecture Notes in Computer Science, vol. 11800, pp.
484–501. Springer (2019). https://doi.org/10.1007/978-3-030-30942-8_29

2. Filliâtre, J., Paskevich, A.: Why3 - where programs meet provers. In: Proc. of the
22nd European Symposium on Programming (ESOP 2013). Lecture Notes in Com-
puter Science, vol. 7792, pp. 125–128. Springer (2013). https://doi.org/10.1007/
978-3-642-37036-6_8

3. Kawamoto, Y., Kobayashi, K., Suenaga, K.: Statwhy: Formal verification tool for
statistical hypothesis testing programs. In: Proc. the 37th International Confer-
ence on Computer Aided Verification (CAV 2025), Part II. Lecture Notes in Com-
puter Science, vol. 15932, pp. 216–230. Springer (2025). https://doi.org/10.1007/
978-3-031-98679-6_10

4. Kawamoto, Y., Sato, T., Suenaga, K.: Formalizing statistical beliefs in hypothesis
testing using program logic. In: Proc. the 18th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR’21). pp. 411–421 (2021).
https://doi.org/10.24963/kr.2021/39

5. Kawamoto, Y., Sato, T., Suenaga, K.: Sound and relatively complete belief hoare
logic for statistical hypothesis testing programs. Artif. Intell. 326, 104045 (2024).
https://doi.org/10.1016/J.ARTINT.2023.104045

6. Pereira, M., Ravara, A.: Cameleer: A deductive verification tool for ocaml. In: Proc.
of the 33rd International Conference on Computer Aided Verification (CAV 2021),
Part II. Lecture Notes in Computer Science, vol. 12760, pp. 677–689. Springer
(2021). https://doi.org/10.1007/978-3-030-81688-9_31

30

https://doi.org/10.1007/978-3-030-30942-8_29
https://doi.org/10.1007/978-3-030-30942-8_29
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-031-98679-6_10
https://doi.org/10.1007/978-3-031-98679-6_10
https://doi.org/10.1007/978-3-031-98679-6_10
https://doi.org/10.1007/978-3-031-98679-6_10
https://doi.org/10.24963/kr.2021/39
https://doi.org/10.24963/kr.2021/39
https://doi.org/10.1016/J.ARTINT.2023.104045
https://doi.org/10.1016/J.ARTINT.2023.104045
https://doi.org/10.1007/978-3-030-81688-9_31
https://doi.org/10.1007/978-3-030-81688-9_31

Names of testing methods Goals of the hypothesis testing File names Names in scipy.stats

t-test mean of a population ttest.mlw ttest_1samp
two population means (independent samples) ttest.mlw ttest_ind
two population means (paired comparisons) ttest.mlw ttest_rel

χ2-test goodness of fit chisquare.mlw chisquare
independence of two categorical data chi2_contingency.mlw chi2_contingency

F -test two population variances ftest.mlw
Binomial test probability of success binom.mlw binomtest
Quantile test quantile of a population quantile_test.mlw quantile_test
Skewness test skewness of a population skew_test.mlw skew_test
D’Agostino-Pearson’s test normality of a population normality_test.mlw normaltest
Jarque-Bera test normality of a population normality_test.mlw jarque_bera
Shapiro-Wilk test normality of a population normality_test.mlw shapiro
Anderson-Darling test population type anderson.mlw anderson
Cramér-von Mises test goodness of fit cramervonmises.mlw cramervonmises
Power divergence test goodness of fit power_divergence.mlw power_divergence
Wilcoxon signed-rank test equality of two distributions wilcoxon.mlw wilcoxon
Mann-Whitney U test equality of two distributions mannwhitneyu.mlw mannwhitneyu
Baumgartner-Weiss-Schindler test equality of two distributions bws_test.mlw bws_test
Wilcoxon rank-sum test equality of two distributions ranksums.mlw ranksums
Two-sample Cramér-von Mises test equality of two distributions cramervonmises.mlw cramervonmises_2samp
Epps-Singleton test equality of two distributions epps_singleton_2samp.mlw epps_singleton_2samp
Two-sample Kolmogorov-Smirnov test equality of two distributions ks.ml ks_2samp
Mood’s median test two population medians median_test.mlw median_test
Fisher’s exact test independence of two categorical data fisher_exact.mlw fisher_exact
One-way ANOVA equality of population means oneway_ANOVA.mlw f_oneway
Tukey’s HSD test pairwise comparison of means tukey_HSD.mlw tukey_hsd
Steel-Dwass test pairwise comparison of means steel_dwass.mlw
Dunnett’s test comparisons of means against a control group dunnett.mlw dunnett
Williams’ test comparisons of means against a control group williams.mlw
Steel test comparisons of means against a control group steel.mlw
Kruskal-Wallis H-test equality of medians kruskal.mlw kruskal
Alexander-Govern test equality of means alexandergovern.mlw alexandergovern
Fligner-Killeen test equality of variances fligner.mlw fligner
Levene test equality of variances levene.mlw levene
Bartlett’s test equality of variances bartlett.mlw bartlett
Friedman test consistency among samples friedmanchisquare.mlw friedmanchisquare
k-sample Anderson-Darling test equality of populations anderson.mlw anderson_ksamp

Table 1: Hypothesis testing methods supported in StatWhy

31

Table 2: The execution times (sec) of programs for popular single-comparison hypoth-
esis testing.

File names Test methods Times (sec)

ex_alexandergovern.mlw Alexander-Govern test 8.75
ex_bartlett.mlw Bartlett’s test 0.87
ex_binom.mlw Binomial test 0.46
ex_chisquare.mlw χ2 test 5.50
ex_ftest.mlw F -test 0.45
ex_kruskal.mlw Kruskal-Wallis test 0.88
ex_oneway.mlw One-way ANOVA 2.55
ex_ttest.mlw One-sample t-test 0.46

Student’s t-test 0.48
Welch’s t-test 0.43
Paired t-test 0.44

Table 3: The execution times (sec) for verifying hypothesis testing programs with dif-
ferent numbers of disjunctive (OR) and conjunctive (AND) hypotheses. In practice,
the number of hypotheses in hypothesis testing is less than 10.

#hypotheses 2 3 4 5 6 7 8 9 10

OR 8.77 8.89 8.84 8.94 9.01 9.01 9.04 9.16 9.23
AND 8.82 8.72 8.86 8.98 8.95 9.03 9.11 9.17 9.46

Table 4: The execution times (sec) for various multiple comparison methods. #groups
(resp. #comparisons) represents the number of groups (resp. combinations of groups)
compared in the hypothesis testing. In practice, #groups in multiple comparison is at
most 7.

#groups

Test methods Metric 2 3 4 5 6 7

Tukey’s HSD test Times (sec) 0.37 9.09 9.33 9.81 15.27 16.39
#comparisons 1 3 6 10 15 21

Dunnett’s test Times (sec) 0.48 8.98 9.17 9.61 9.62 9.77
#comparisons 1 2 3 4 5 6

Williams’ test Times (sec) 0.48 8.90 9.04 9.16 9.23 9.58
#comparisons 1 2 3 4 5 6

Steel-Dwass’ test Times (sec) 0.44 9.05 9.43 9.76 15.10 16.24
#comparisons 1 3 6 10 15 21

Steel’s test Times (sec) 0.49 8.79 8.92 9.11 9.43 9.74
#comparisons 1 2 3 4 5 6

32

	User Documentation for StatWhy v.1.3.0

