User Manual for HylLeak v.1.0:
Hybrid Analysis Tool for Information Leakage

Fabrizio Biondi!, Yusuke Kawamoto?, Axel Legay®, and Louis-Marie
Traonouez?

1 CentraleSupélec Rennes, Rennes, France
2 AIST, Tsukuba, Japan
3 Inria Rennes, Rennes, France

Abstract. This is a user manual of the tool HyLeak for reasoning about
the quantity of information leakage in programs. The tool takes as input
a program code written in a simple imperative language and computes
the amount of leaked secret information in the observables outputs of
the given program.

The tool HylLeak [1] takes as input a program code written in a simple im-
perative language (a slight extension of the input language used in the QUAIL
tool) and computes its Shannon leakage, i.e., the mutual information between
the variables defined as secrets and those as observable outputs in the given
program.

Following the theoretical results in Kawamoto et al. [5], HyLeak divides the
input program into (terminal) components and decides for each of them whether
to analyze it using precise analysis (based on QUAIL [2]) or statistical analy-
sis (using a similar approach to LeakiEst [3] and LeakWatch [4]), by applying
heuristics that evaluate the analysis cost of each component. Then, HyLeak com-
poses the analysis results of all components into an approximate joint probability
distribution of the secret and observable variables in the program. Finally, the
tool estimates the Shannon leakage and its confidence interval.

1 Getting Started

The source code and examples of HyLeak can be downloaded from https://project.
inria.fr/hyleak/files/2017 /04 /hyleak.tar.gz (~ 6.6 MB).
To decompress and compile it:

1. HyLeak is written in Java. Make sure you have the latest version of the Java
Runtime Environment installed.
2. Unzip the program by running

$ tar zxvf hyleak.tar.gz

3. Enter the HylLeak directory by running

$ cd hyleak/
4. Compile HylLeak by running
$ make

HyLeak is now compiled.

Refer to Section 2 for information on how to use HyLeak, to Section 3 for the
input language of the programs analyzed by HylLeak, and to Section 4 for the
intermediate files that HylLeak generates.

2 Usage

You can execute HylLeak with an input code program.hyleak in a terminal by
running:

> ./hyleak [arguments] program.hyleak

Arguments

HylLeak is based on the QUAIL v 2.0 code, and shares some of its functionalities.
The possible arguments for HylLeak are:

-c | --clean

Delete the temporary preprocessed file.
—--config=<filename>

Alternative location for the configuration file.
-h | -7 | --help

Print the help and terminate.
-v <level>

Verbose mode between 0 (minimum) and 4 (maximum). Default value if not
specified is 2.

-verb:<vname>:=<vvalue>

Set verbosity for location <vname> to value <vvalue> (advanced users only).
--verb-locations

Print verbosity locations and terminate.

-th <number>

Sets the number of parallel threads HyLeak should use. Default is the number
returned by Runtime.getRuntime().availableProcessors(), minimum 1.

-p <value>

Define computation precision as a number of digits. Default value if not
specified is 15.

—-—const:<cname>:=<cvalue>

Replace the value of a constant <cname> in the model by the value <cvalue>.
—-—preprocess

Run only the preprocessor and terminate.
--no-preprocess

Do not run the preprocessor (advanced users only; input file must be in if-goto
format).

-i <iterations>
Sets the total number of simulations to use on all components. Default: 50000.
-t <time_limit>

Sets the time limit (in milliseconds) for the simulation. A value of 0 means
no time limit. Default: 0 (meaning no time limit).

--no-cfg

By default and if the dot utility is installed, HyLeak draws the Control Flow
Graph (CFG) of the program to be analyzed as a file cfg.png. This option pre-
vents HylLeak from drawing the CFG of the program.

3 HylLeak Language

The input language for programs to be analyzed by HylLeak is almost identical
to the input language of the QUAIL tool [2] that HyLeak is based on. The only
additions are the bounded FOR loops described in Section 3.10 and the Simulate
statements described in Section 3.11. See Appendix A for the full syntax of the
language.

3.1 Comments

Comments in the program starts with //. Then the rest of the line is ignored.

3.2 Variable declarations

All variables in HylLeak are fixed sized integers. They are declared at the begin-
ning of the program. Constants can be declared in the following manner:
const N := 4;
They are replaced by their value during the preprocessing step.
Public variables are either public or observable. In the latter case the attacker
will be able to distinguish their value. They are declared in the following manner:
public int4 var; or observable int4 var;
declares a 4 bits integer variable whose name is var, either public or observable.
public int4 var := 5;
declares var and initializes it to value 5. Any expression can be used to initialized
a variable, provided that the variables used in the expression are public or con-
stants and have been previously declared. Variables not initialized are implicitly
initialized to the value 0.
Private variables are either private or secret. The attacker will only infer
knowledge on the latter. They are declared in the following manner:
private int4 var; or secret int4 var;
declares a 4 bits integer variable whose name is var, either private or secret.
private int4 var := [0,1]1[2,5];
declares var and restricts its range to the two intervals [0,1] and [2,5]. Again any
expression can be used in the bounds of the intervals.

3.3 Arrays

Variables can also be arrays of integers and multi-dimensional arrays. Arrays are
declared in addition to the integer type of a variable.

public array[4] of int4 tab;
declares a public variable tab that is an array of 4 bits integer of size 4 whose
indices range from 0 to 3, while

public array[1l..4] of int4 tab;
declares tab as an array of size 4 whose indices range from 1 to 4. The size of
an array can be any expression that evaluates to an integer.

Arrays are replaced during the preprocessing. Therefore, an array variable
named tab, whose indices range from 0 to 3, declares 4 variables, whose name
are tab[0], tab[1], tab[2] and tab[3]. They have the same publicity and the
same integer type as the array.

An array may be initialized with a set of initial values:

public array[l..4] of int4 tab := {1,1,2,2};
initializes tab such that tab[1] and tab[2] are equal to 1, while tab[3] and
tab[4] are equal to 2. Private arrays can be initialized like any private variable,
with a set of intervals:

private array[1..4] of int4 tab := [0,1];

In that case all the variables in the array are initialized to the same range of
integers.

3.4 Expressions

Expressions are used in guards, assignments, variables initialization and arrays
indices. Binary operators (| |,&&,”,+,-*,/ and %) and unary operators (-,!) can
used. Classical operators precedence is assumed. For boolean operations integer
variables are considered as a true value if non null, and false if null. Only public
variables, constants and integers can be used in expressions.

3.5 Guards

Guards are limited to a single comparison between a variable on the left side
(either public, or private, or constant, or an integer value) and an expression on
the right side. Any comparison operator among <,>,<=,>=,== and != can be
used.

3.6 Assignments

An assignment statement is written in the following manner:

assign var := expr;
where var is a public variable (possibly with indices) and ezpr is an expression
containing no private variables.

3.7 Random assignments

The program can used two types of random primitives to assign values to a
variable.

random var := random(ezpr_min,erpr_maz) ;
assigns to a public variable var a random value, chosen between the values of
ezpr-min and ezpr_maz, with a uniform probability distribution.

random var := randombit (p);
where p is a float value lower than 1, assigns to a public variable var a random
bit value, that is 0 with probability p, and 1 with probability 1 — p.

3.8 IF statements

IF conditional statements starts with the keyword if, possibly followed by elif
and else, and ends with fi. The consequent statements are listed after the
keyword then. For example the following structures are allowed:

if (h <= 1) then assign var:=1;

fi

if (h <= 1) then assign var:=1;

else assign var:=2;

assign var:=var+l;

fi

if (h <= 1) then assign var:=1;

elif (h==1) then assign var:=2;

fi

if (h <= 1) then assign var:=1;
elif (h==1) then assign var:=2;
elif (h==1+1) then assign var:=2;
else assign var:=2;

fi

3.9 WHILE statements

Conditional WHILE loop starts with the keyword while, followed by a guard,
and the statements included in the loop are listed between the keywords do and
od. For example the following structure is allowed:

while (h <= 1) do

assign 1 := 1;

assign var := 2;

od

3.10 FOR statements

A FOR loop can be used to browse all the elements of an array. The syntax is:

for (var in tab) do

assign var := var+l;

od
The variable var is a local variable that must only be used inside the loop. It
will take successively each value in the array tab. Note that if tab is a multi-
dimensional array var is also an array.

A bounded FOR loop is also available to loop over commands while a variable
takes values from an interval. The syntax is:

for (var in interv) do

assign var := var+l;

od
The variable var is a local variable that must only be used inside the loop. It
will take successively each value in the interval interv. For instance, writing
for (var in [0,i-1]) will assign to variable var all values from 0 to the value
of variable 1 minus 1.

3.11 Simulate statements

A simulate statement indicates to the tool that at this point of the program the
precise analysis has to halt and statistical simulation has to be started instead.
The syntax is:
simulate;
The simulate-abs is similarly use to halt precise analysis and start abstraction-
then-sampling analysis, as described in Section 4.3 of [5]. The syntax is:
simulate-abs;
If no simulate nor simulate-abs is introduced in the input program by the
user, the tool decides heuristically which parts of the input program to analyze

with statistical simulation and with abstraction-then-sampling and inserts the
statements accordingly, as described in Section 2 of [1].

3.12 Return statements

The program ends when a return statement is reached. Its syntax is simply:
return;

4 Intermediate Files

When you execute HylLeak with an input program program.hyleak, the prepro-
cessor of HylLeak generates the following intermediate files:

program.hyleak.1.pp
program.hyleak.2.pp
program.hyleak.2.values
program.hyleak.3.pp
program.hyleak.4.pp

The meaning of each file is:

—.1.pp: constants removed, expressions reduced, checks performed
—.2.pp: loop unrolled and arrays expanded

—.2.values: information on rough ranges of variables

—.3.pp: annotate by heuristics

—.4.pp: final if-goto code

Details of the if-goto language is explained in Appendix B.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP17K12667, by
JSPS and Inria under the Japan-France AYAME Program, by the MSR-Inria
Joint Research Center, by the Sensation European grant, and by région Bretagne.

References

1. F. Biondi, Y. Kawamoto, A. Legay, and L. Traonouez. Hyleak: Hybrid analysis tool
for information leakage. In Proc. of ATVA’17, pages 156-163, 2017.

2. F. Biondi, A. Legay, L. Traonouez, and A. Wasowski. QUAIL: A quantitative
security analyzer for imperative code. In Proc. of CAV’13, pages 702-707, 2013.

3. T. Chothia, Y. Kawamoto, and C. Novakovic. A tool for estimating information
leakage. In Proc. of CAV’13, pages 690-695, 2013.

4. T. Chothia, Y. Kawamoto, and C. Novakovic. Leakwatch: Estimating information
leakage from java programs. In Proc. of ESORICS’14, Part II, pages 219-236, 2014.

5. Y. Kawamoto, F. Biondi, and A. Legay. Hybrid statistical estimation of mutual
information for quantifying information flow. In Proc. of FM’16, pages 406—425,
2016.

A Syntax of HylLeak Language

Finally we present the syntax of HylLeak Language.

program := (declaration)* (statement)*
declaration := const_declaration | public_declaration | private_declaration
declaration := ’const’ IDENTIFIER ’:=’ expression ’;’
public_declaration := public_type var_type IDENTIFIER ’;’

| public_type var_type IDENTIFIER ’:=’ init_val ’;’
public_type := ’public’ | ’observable’

private_declaration := private_type var_type IDENTIFIER ’;’
| private_type var_type IDENTIFIER ’:=’ (init_interval)+ ’;’

private_type := ’private’ | ’secret’
var_type := INT | ’array[’ expression (’..° expression)? ’]’ ’of’ var_type
init_val := expression | ’{’ number_list ’}’
number_list := expression (’,’ expression)x*
init_interval := ’[’ expression ’,’ expression ’]’
statement := assignment_st | return_st | random_st | while_st | for_st
| if_st | simulate_st
assignment_st := ’assign’ public_variable ’:=’ expression ’;’
return_st := ’return’ ’;’
random_st := ’random’ public_variable ’:=’ ’randombit’ ’(’ FLOAT ’)’ ’;’
| ’random’ public_variable ’:=’ ’random’ ’(’ expression ’,’ expression ’)’ ’;
while_st := ’while’ ’(’ guard ’)’ ’do’ (statement)* ’od’
for_st := ’for’ ’(’ IDENTIFIER ’in’ IDENTIFIER indices ’)’

’do’ (statement)* ’od’
| >for’ °>(’ IDENTIFIER ’in’ ’[’ IDENTIFIER °’,’ IDENTIFIER ’]’ ’)°
’do’ (statement)* ’od’

if_st := if_case (elif_case)* (else_case)? ’fi’
simulate_st := ’simulate’|’simulate-abs’

if_case := ’if’ ’(’ guard ’)’ ’then’ (statement)x*
else_case := ’else’ (statement)*

elif_case := ’elif’ ’(’ guard ’)’ ’then’ (statement)x*
guard := leaf_term comp_operator expression
comp_operator := <=’ | ’>=2 | > | < | ==’ | 21=)
expression := expression binary_operator expression | unary_expression
binary_operator := ||’ |2&&’ |27 |42 2= %22 /0 |2y
unary_expression := unary_operator term | term
unary_operator := ’!’|’-?

term := ’(’ expression ’)’ | public_variable | NUMBER

leaf_term := NUMBER | IDENTIFIER (index)*
public_variable := IDENTIFIER (index)*
index := ’[’ expression ’]’

The lexical terms of the grammar are:

INT := ’int’’0’..’9°+

IDENTIFIER := (’a’..’z’|’A’..°Z°|’_?)(Ca’. .7z’ |’A’..°Z°|°0°..797 |77)x*
NUMBER := ’0’..°9’°+

FLOAT := 0°°.°(°0°..°9°)+

The keywords of the language are: const, public, observable, private,
secret, array, of, int, return, assign, random, randombit, if, elif, else,
fi, then, while, for, do, od, simulate, simulate_abs.

B if-goto Language

The analyzer takes as input a program written in a simplified lower level lan-
guage. Briefly, the differences are the following:

— It has no array and no constant variable.

— All the terms in expressions must be enclosed within brackets.

— It has only if conditional (no while and no for), without elif case, that are
not closed with fi.

— And additional goto statement is used whose syntax is:

goto line;

where line is a line number in the program.
— if and else consequences are limited to a single goto statement.
— The program has no comments and no blank line.

The preprocessor compiles automatically a HylLeak program to this language.

